临近空间高速飞行器数值模拟技术专栏

TVD格式在水滴流场数值模拟中的应用

  • 王昭力 ,
  • 曾涛 ,
  • 周志宏 ,
  • 陈宇
展开
  • 1. 四川大学 建筑与环境学院, 成都 610065;
    2. 宜宾四川大学产业技术研究院, 宜宾 644000

收稿日期: 2022-01-28

  修回日期: 2022-03-07

  网络出版日期: 2022-05-19

基金资助

国家自然科学基金(12072213);国家科技重大专项(J2019-III-0010-0054);国家数值风洞工程(NNW2019-JT01-023)

Application of TVD scheme in numerical simulation of water droplet field

  • WANG Zhaoli ,
  • ZENG Tao ,
  • ZHOU Zhihong ,
  • CHEN Yu
Expand
  • 1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
    2. Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China

Received date: 2022-01-28

  Revised date: 2022-03-07

  Online published: 2022-05-19

Supported by

National Natural Science Foundation of China (12072213); National Science and Technology Major Project (J2019-III-0010-0054); National Numerical Windtunnel Project (NNW2019-JT01-023)

摘要

结冰会严重影响飞机的飞行安全,而数值模拟是研究飞机结冰的重要手段,在使用欧拉法求解水滴流场时,由于液态水含量分布存在间断以及欧拉法速度的单值性特性,会导致飞机结冰数值计算中的水滴流场迭代求解过程容易发散。针对这一问题,考虑双曲型守恒律方程,给出了水滴流场计算的5种TVD型有限体积方法,主要思想是在一阶单调格式的基础上,在每一个单元上对变量作单调线性重构函数。其中,时间离散采用四阶Runge-Kutta方法。通过计算,分析了该方法的精度和收敛性,通过对NACA0012翼型、NACA23012翼型以及30P30N三段翼的计算结果表明该方法是成功的。提高了欧拉法求解水滴流场的空间精度,也为TVD格式在两相流中的应用提供有益参考。

本文引用格式

王昭力 , 曾涛 , 周志宏 , 陈宇 . TVD格式在水滴流场数值模拟中的应用[J]. 航空学报, 2022 , 43(12) : 627010 -627010 . DOI: 10.7527/S1000-6893.2022.27010

Abstract

Aircraft icing endangers the safety of aviation, while numerical calculation is a major method to research icing. The iterative solving process of the water droplet field in the numerical calculation of aircraft icing tends to easily diverge due to the discontinuity in the distribution of water content and the singularity of the velocity in the Euler method. Aiming at this problem and considering the hyperbolic conservation law equation, we present five TVD schemes for the calculation of the water droplet field. The main idea is to develop a monotonic linear reconstruction function for the variables on each unit based on the first-order upwinding scheme, and the time discretization adopts the fourth-order Runge-Kutta method. The accuracy and convergence of the method are analyzed by calculation, and the calculation results of the NACA0012 airfoil, NACA23012 airfoil and three-element airfoil 30P30N show that the method is successful. It improves the spatial accuracy in solving the water droplets field using Eulerian method and provides reference for the application of TVD scheme in two-phase flow.

参考文献

[1] 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2):520734. GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520734(in Chinese).
[2] 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12):124085. BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124085(in Chinese).
[3] 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2):173-176. YANG Q, CHANG S N, YUAN X G. Study on numerical method for determining the droplet trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2):173-176(in Chinese).
[4] 易贤, 朱国林, 王开春, 等. 翼型积冰的数值模拟[J]. 空气动力学学报, 2002, 20(4):428-433. YI X, ZHU G L, WANG K C, et al. Numerically simulating of ice accretion on airfoil[J]. Acta Aerodynamica Sinica, 2002, 20(4):428-433(in Chinese).
[5] BOURGAULT Y, HABASHI W, DOMPIERRE J, et al. An Eulerian approach to supercooled droplets impingement calculations[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997.
[6] BOURGAULT Y, BOUTANIOS Z, HABASHI W G. Three-dimensional eulerian approach to droplet impingement simulation using FENSAP-ICE, part 1:Model, algorithm, and validation[J]. Journal of Aircraft, 2000, 37(1):95-103.
[7] IULIANO E, BRANDI V, MINGIONE G, et al. Water impingement prediction on multi-element airfoils by means of eulerian and Lagrangian approach with viscous and inviscid air flow[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[8] TONG X, LUKE E A. Robust and accurate eulerian multiphase simulations of icing collection efficiency using singularity diffusion model[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(4):483-495.
[9] 张大林, 杨曦, 昂海松. 过冷水滴撞击结冰表面的数值模拟[J]. 航空动力学报, 2003, 18(1):87-91. ZHANG D L, YANG X, ANG H S. Numerical simulation of supercooled water droplets impingement on icing surfaces[J]. Journal of Aerospace Power, 2003, 18(1):87-91(in Chinese).
[10] 杨胜华, 林贵平, 申晓斌. 三维复杂表面水滴撞击特性计算[J]. 航空动力学报, 2010, 25(2):284-290. YANG S H, LIN G P, SHEN X B. Water droplet impingement prediction for three-dimensional complex surfaces[J]. Journal of Aerospace Power, 2010, 25(2):284-290(in Chinese).
[11] 易贤, 王开春, 桂业伟, 等. 结冰面水滴收集率欧拉计算方法研究及应用[J]. 空气动力学学报, 2010, 28(5):596-601, 608. YI X, WANG K C, GUI Y W, et al. Study on Eulerian method for icing collection efficiency computation and its application[J]. Acta Aerodynamica Sinica, 2010, 28(5):596-601, 608(in Chinese).
[12] 陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报, 2017, 38(6):120745. CHEN X, ZHAO Q J. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120745(in Chinese).
[13] 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1):726371. LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1):726371(in Chinese).
[14] 涂国华, 袁湘江, 陈陆军. 适用于超声速的一种通量限制型紧致格式[J]. 航空学报, 2004, 25(4):327-332. TU G H, YUAN X J, CHEN L J. A limited flux compact scheme suited to supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):327-332(in Chinese).
[15] 刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报, 2022,43(3):125009. LIU J, HAN F, WEI Y X. Some problem of MUSCL and WENO schemes generated by dimension-by-dimension approach[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(3):125009(in Chinese).
[16] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese).
[17] 任伟杰, 谢文佳, 田正雨, 等. 高超声速数值激波失稳的网格依赖性[J]. 航空学报, 2021, 42(S1):726376. REN W J, XIE W J, TIAN Z Y, et al. Grid dependence of hypersonic numerical shock instability[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1):726376(in Chinese).
[18] 张帝. 高精度有限体积格式及新型VOF自由界面捕捉算法[D]. 北京:清华大学, 2015. ZHANG D. High resolution finite volume method and a refined VOF algorithm[D]. Beijing:Tsinghua University, 2015(in Chinese).
[19] HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3):357-393.
[20] SWEBY P K. High resolution schemes using flux limiters for hyperbolic conservation laws[J]. SIAM Journal on Numerical Analysis, 1984, 21(5):995-1011.
[21] VAN LEER B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme[J]. Journal of Computational Physics, 1974, 14(4):361-370.
[22] ROE P L. Characteristic-based schemes for the Euler equations[J]. Annual Review of Fluid Mechanics, 1986, 18:337-365.
[23] VAN LEER B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1997, 135(2):229-248.
[24] WATERSON N P, DECONINCK H. Design principles for bounded higher-order convection schemes-A unified approach[J]. Journal of Computational Physics, 2007, 224(1):182-207.
[25] MORENCY F, TEZOK F, PARASCHIVOIU I. Anti-icing system simulation using CANICE[J]. Journal of Aircraft, 1999, 36(6):999-1006.
[26] 曹广州. 迎风表面三维积冰的数学模型与计算方法研究[D]. 南京:南京航空航天大学, 2011. CAO G Z. Investigation of mathematic model and calculational methodology for 3D ice accretion on the up-wind surfaces[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
[27] PAPADAKIS M, RACHMAN A, WONG S C, et al. Water impingement experiments on a NACA 23012 airfoil with simulated glaze ice shapes[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA,2004.
文章导航

/