流体力学与飞行力学

基于新型多可信度代理模型的多目标优化方法

  • 赵欢 ,
  • 高正红 ,
  • 夏露
展开
  • 西北工业大学 航空学院,西安 710072
.E-mail: xialu@nwpu.edu.cn

收稿日期: 2022-01-18

  修回日期: 2022-04-24

  录用日期: 2022-05-10

  网络出版日期: 2022-05-19

基金资助

国家自然科学基金(12102489);翼型、叶栅空气动力学重点实验室基金(614220121010126)

Novel multi-fidelity surrogate model assisted many-objective optimization method

  • Huan ZHAO ,
  • Zhenghong GAO ,
  • Lu XIA
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an,710072,China
E-mail: xialu@nwpu.edu.cn

Received date: 2022-01-18

  Revised date: 2022-04-24

  Accepted date: 2022-05-10

  Online published: 2022-05-19

Supported by

National Natural Science Foundation of China(12102489);National Key Laboratory of Science and Technology on Aerodynamic Design and Research(614220121010126)

摘要

相对于常规直升机,基于前行桨叶方案(ABC)速度更高的刚性共轴双旋翼直升机对旋翼翼型的气动性能要求更加苛刻,包括更高马赫数下的低阻和高阻力发散特性,并维持良好的中、低马赫数下的升阻特性以及所有状态下的力矩特性等10余项指标要求,面临高维多目标优化难题。针对该类问题,首先发展了基于核主成分分析(KPCA)的非线性目标降维技术,然后建立了基于新型多可信度多项式混沌-Kriging(AMF-PCK)代理模型的高效多目标稳健优化方法,并提出了变可信度伪期望改进矩阵(VF-PEIM)并行样本填充方法,使多目标优化设计效率和能力显著提高。利用所建立的基于新型多可信度代理模型的多目标优化方法对高速直升机7%厚度旋翼翼型进行了优化设计。设计翼型的气动表现分别与经典的OA407翼型在高、中、低马赫数下进行了全面比较,对比结果验证了提出的新型多目标优化设计方法的有效性,设计翼型高速气动特性得到了显著提升。

本文引用格式

赵欢 , 高正红 , 夏露 . 基于新型多可信度代理模型的多目标优化方法[J]. 航空学报, 2023 , 44(6) : 126962 -126962 . DOI: 10.7527/S1000-6893.2022.26962

Abstract

Compared with a conventional helicopter, a compound helicopter with its rigid coaxial rotor, famous as an Advancing Blade Concept (ABC) rotor, has more stringent requirements for the aerodynamic performance of the rotor airfoil. And the 10 more index requirements, e.g., the low-drag and high drag-divergence characteristics at higher Mach numbers, the high lift-drag characteristics at medium and low Mach numbers, and good pitching moment characteristics at all conditions, face the problem of many-objective optimization. To solve this issue, this paper first develops a novel nonlinear dimension-reduction technology based on Kernel Principal Component Analysis (KPCA), then establishes an efficient many-objective robust optimization framework based on a novel Adaptive Multi-Fidelity Polynomial Chaos-Kriging (AMF-PCK) surrogate model. Moreover, the paper proposes a Variable-Fidelity Pseudo Expected Improvement Matrix (VF-PEIM) parallel in-filling method, which significantly improves the efficiency and ability of many-objective optimization. The novel AMF-PCK assisted multi-objective optimization method is used to optimize the 7% thickness rotor airfoil of such compound helicopter. The aerodynamic performances of the designed airfoils are compared with those of the classical OA407 airfoil at high, medium, and low Mach numbers comprehensively. Results demonstrate the effectiveness of the proposed many-objective global optimization method and a significant improvement of high-speed aerodynamic characteristics of the designed rotor airfoils.

参考文献

1 DEB K, SAXEAN D. Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems[C]∥ Piscataway: IEEE Press, 2006: 3352-3360.
2 ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many-objective optimization: A short review[C]∥ 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Piscataway: IEEE Press, 2008: 2419-2426.
3 PURSHOUSE R C, FLEMING P J. Evolutionary many-objective optimisation: An exploratory analysis[C]∥ The 2003 Congress on Evolutionary Computation. Piscataway: IEEE Press, 2003: 2066-2073.
4 SATO H, AGUIRRE H E, TANAKA K. Controlling dominance area of solutions and its impact on the performance of MOEAs[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 5-20.
5 DRECHSLER N, DRECHSLER R, BECKER B. Multi-objective optimisation based on relation favour[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2001: 154-166.
6 KUKKONEN S, LAMPINEN J. Ranking-dominance and many-objective optimization[C]∥ 2007 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, Press 2007: 3983-3990.
7 WAGNER T, BEUME N, NAUJOKS B. Pareto-, aggregation-, and indicator-based methods in many-objective optimization[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 742-756.
8 HUGHES E J. Evolutionary many-objective optimisation: Many once or one many?[C]∥ 2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2005 : 222-227.
9 ISHIBUCHI H, DOI T, NOJIMA Y. Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms[C]∥ Parallel Problem Solving from Nature - PPSN IX. Berlin: Springer, 2006: 493-502.
10 ISHIBUCHI H, NOJIMA Y. Optimization of scalarizing functions through evolutionary multiobjective optimization [C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 51-65.
11 DEB K, SUNDAR J. Reference point based multi-objective optimization using evolutionary algorithms [C]∥ Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 635-642.
12 BROCKHOFF D, ZITZLER E. Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective Optimization[C]∥ Parallel Problem Solving from Nature - PPSN IX. Berlin: Springer, 2006: 533-542.
13 JAIMES A L, COELLO COELLO C A, CHAKRABORTY D. Objective reduction using a feature selection technique[C]∥ Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2008: 673-680.
14 DEB K, SAXENA D K. On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems [R]. Kanpur: Indian Institute of Technology, 2005.
15 SINGH H K, ISAACS A, RAY T. A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation201115(4): 539-556.
16 ZHAO K, GAO Z H, HUANG J T, et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics201629(6): 1541-1552.
17 HUANG J T, ZHU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics201730(4): 1336-1348.
18 SAXENA D K, DURO J A, TIWARI A, et al. Objective reduction in many-objective optimization: Linear and nonlinear algorithms[J]. IEEE Transactions on Evolutionary Computation201217(1): 77-99.
19 ZHAO H, GAO Z H, XU F, et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering201926(3): 685-732.
20 ZHAO H, GAO Z H. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J]. Engineering Computations201936(3): 971-996.
21 赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报202243(1): 124894.
  ZHAO H, GAO Z H, XIA L. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica202243(1): 124894 (in Chinese).
22 ZHAO H, GUO Z H, XU F, et al. An efficient adaptive forward-backward selection method for sparse polynomial chaos expansion[J]. Computer Methods in Applied Mechanics and Engineering2019355: 456-491.
23 PALAR P S, SHIMOYAMA K. On efficient global optimization via universal Kriging surrogate models[J]. Structural and Multidisciplinary Optimization201857(6): 2377-2397.
24 ZHAO H, GAO Z H, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization202164(2): 829-858.
25 SCHOBI R, SUDRET B, WIART J. Polynomial-chaos-based kriging[J]. International Journal for Uncertainty Quantification20155(2): 171-193.
26 TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science2000290(5500): 2319-2323.
27 WEINBERGER K Q, SAUL L K. Unsupervised learning of image manifolds by semidefinite programming[J]. International Journal of Computer Vision200670(1): 77-90.
28 SAXENA D K, DEB K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: Employing correntropy and a novel maximum variance unfolding[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 772-787.
29 STURM J F. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones[J]. Optimization Methods and Software199911: 625-653.
30 KEANE A J. Statistical improvement criteria for use in multiobjective design optimization[J]. AIAA Journal200644(4): 879-891.
31 BAUTISTA D C T. A sequential design for approximating the pareto front using the expected pareto improvement function[M]. Columbus: The Ohio State University, 2009.
32 ZITZLER E. Evolutionary algorithms for multiobjective optimization: Methods and applications[M]. Ithaca: Shaker, 1999.
33 KNOWLES J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation200610(1): 50-66.
34 ZHAN D W, CHENG Y S, LIU J. Expected improvement matrix-based infill criteria for expensive multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation201721(6): 956-975.
35 ZHAN D W, QIAN J C, LIU J, et al. Pseudo expected improvement matrix criteria for parallel expensive multi-objective optimization[C]∥ World Congress of Structural and Multidisciplinary. Cham: Springer, 2017: 175-190.
36 赵欢,高正红,夏露 .基于新型高维代理模型的气动外形设计方法研究[J].航空学报202344(1): 126924.
  ZHAO H, GAO Z H, XIA L, et al. Research on novel high-dimensional surrogate model-based aerodynamic shape design optimization method[J]. Acta Aeronautica et Astronautica Sinica202344(1): 126924 (in Chinese).
37 ZHAO H, GUO Z H, XIA L. Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model[J]. Computers & Fluids2022246: 105643
38 赵欢. 基于自适应多可信度多项式混沌-Kriging模型的高效气动优化方法[J]. 力学学报202355(1): 1-16.
  ZHAO H. Adaptive multi-fidelity polynomial chaos-kriging model-based efficient aerodynamic design optimization method[J]. Chinese Journal of Theoretical and Applied Mechanics202355(1): 1-16 (in Chinese).
文章导航

/