嫦娥五号月球轨道交会导引策略设计
收稿日期: 2021-10-29
修回日期: 2021-11-29
录用日期: 2022-03-22
网络出版日期: 2022-05-19
基金资助
国家中长期科技发展规划重大专项
Lunar orbit rendezvous phasing design for Chang’e-5 Mission
Received date: 2021-10-29
Revised date: 2021-11-29
Accepted date: 2022-03-22
Online published: 2022-05-19
Supported by
National Science and Technology Major Project
嫦娥五号任务实现了国际首次月球无人轨道交会对接,本文详细介绍了其最终飞控实施所采用的交会导引策略的设计模型、方法和工程实现考虑。讨论了嫦娥五号月球轨道交会任务的工程设计约束和关键参数的确定,提出了一种月球轨道交会的交班点确定方法。提出了一种新的四脉冲交会策略,通过引入径向变轨控制量,固定各次变轨点位置,解决了在月球背面测控遮挡约束下确保各次变轨全过程测控可见的工程难题。针对新四脉冲方案,采用近圆轨道偏差方程提出了一种新的初值求解方法,构造了基于微分修正的精确数值求解算法,并推导了求解所需的状态转移矩阵的解析表达形式。建立了测控约束下的交会导引约束优化模型,获得了测控约束下的最优能量解,并揭示了问题的全局特性规律。给出了所提出方法在嫦娥五号实际任务中的应用,验证了此方法的正确性。
孟占峰 , 高珊 , 盛瑞卿 . 嫦娥五号月球轨道交会导引策略设计[J]. 航空学报, 2023 , 44(5) : 326584 -326584 . DOI: 10.7527/S1000-6893.2022.26584
To achieve the mission of Chang’e-5 lunar orbit rendezvous, a new 4-impulsive rendezvous phasing scheme is proposed. By using the radial control variable, the argument of latitude of each impulse is constrained, so as to satisfy the constraint of tracking condition. For the new 4-impulse scheme, a new initial guess method is proposed by using the near-circular orbit deviation equation. A high-fidelity numerical solution is constructed using the differential correction algorithm, and the corresponding analytical state transition matrix is derived. The design consideration and results of the key parameters of Chang’e-5 lunar orbit rendezvous mission are discussed. The optimization design model of rendezvous guidance constraint with the constraint of tracking condition is established. The optimal argument of latitude in each impulse is obtained by solving the optimization problem. The global characteristics of constrained optimization problems are also revealed. The operation results of Chang’e-5 show that the proposed strategy can guarantee the constraint of tracking condition, satisfying the flight mission requirements.
1 | PRUSSING J E, CHIU J H. Optimal multiple-impulse time-fixed rendezvous between circular orbits[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(1): 17-22. |
2 | TRUSSING J E, CLIFTON R S. Optimal multiple-impulse satellite evasive maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3): 599-606. |
3 | PRUSSING J E. Optimal two and three-impulse fixed-time rendezvous in the vicinity of a circular orbit[J]. Journal of Spacecraft and Rockets, 2003, 40(6): 952-959. |
4 | CARTER T E. Fuel-optimal maneuvers of a spacecraft relative to a point in circular orbit[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(6): 710-716. |
5 | CARTER T, HUMI M. Fuel-optimal rendezvous near a point in general Keplerian orbit[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(6): 567-573. |
6 | CARTER T E. New form for the optimal rendezvous equations near a Keplerian orbit[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1): 183-186. |
7 | CHEN C Q, XIE Y C. Optimal impulsive ellipse-to-circle coplanar rendezvous[J]. Science in China Series E: Technological Sciences, 2009, 52(5): 1435-1445. |
8 | LUO Y Z. Optimization of multiple-impulse minimum-time rendezvous with impulse constraints using a hybrid genetic algorithm[J]. Aerospace Science and Technology, 2006, 10(6): 534-540. |
9 | LUO Y Z, TANG G J, LEI Y J, et al. Optimization of multiple-impulse, multiple-revolution, rendezvous-phasing maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(4): 946-952. |
10 | LUO Y Z, LI H Y, TANG G J. Hybrid approach to optimize a rendezvous phasing strategy[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1): 185-191. |
11 | LUO Y Z, TANG G J, LEI Y J, et al. Optimization of multiple-impulse, multiple-revolution, rendezvous-phasing maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(4): 946-952. |
12 | LUO Y Z, TANG G J, PARKS G. Multi-objective optimization of perturbed impulsive rendezvous trajectories using physical programming[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1829-1832. |
13 | 周军, 常燕. 考虑地球扁率J2摄动影响的异面椭圆轨道多冲量最优交会[J]. 宇航学报, 2008, 29(2): 472-475. |
ZHOU J, CHANG Y. Optimal multiple-impulse rendezvous between non-coplanar elliptic orbits considering the J2 perturbation effects[J]. Journal of Astronautics, 2008, 29(2): 472-475 (in Chinese). | |
14 | ARZELIER D, KARA-ZAITRI M, LOUEMBET C, et al. Using polynomial optimization to solve the fuel-optimal linear impulsive rendezvous problem[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1567-1576. |
15 | FEHSE W. Automated rendezvous and docking of spacecraft[M]. Cambridge: Cambridge University Press, 2003 |
16 | BARANOV A A. An algorithm for calculating parame-ters of multi-orbit maneuvers in remote guidance[J]. Cosmic Research, 1990, 28(1): 61-67. |
17 | 王忠贵. 我国首次空间交会对接远距离导引方案设计与飞行验证[J]. 中国科学: 技术科学, 2012, 42(7): 764-770. |
WANG Z G. Design and flight verification of long-distance guidance scheme for China’s first space rendezvous and docking[J]. Scientia Sinica: Technologica, 2012, 42(7): 764-770 (in Chinese). | |
18 | 李革非, 宋军, 刘成军. 交会对接任务轨道控制规划设计与实施[J]. 载人航天, 2014, 20(1): 1-8. |
LI G F, SONG J, LIU C J. Design and implementation of orbit maneuver programming in rendezvous and docking missions[J]. Manned Spaceflight, 2014, 20(1): 1-8 (in Chinese). | |
19 | 胡军, 解永春, 张昊, 等. 神舟八号飞船交会对接制导、导航与控制系统及其飞行结果评价[J]. 空间控制技术与应用, 2011, 37(6): 1-5, 13. |
HU J, XIE Y C, ZHANG H, et al. Shenzhou-8 spacecraft guidance navigation and control system and flight result evaluation for rendezvous and docking[J]. Aerospace Control and Application, 2011, 37(6): 1-5, 13 (in Chinese). | |
20 | 解永春, 张昊, 胡军, 等. 神舟飞船交会对接自动控制系统设计[J]. 中国科学: 技术科学, 2014, 44(1): 12-19. |
XIE Y C, ZHANG H, HU J, et al. Automatic control system design of Shenzhou spacecraft for rendezvous and docking[J]. Scientia Sinica (Technologica), 2014, 44(1): 12-19 (in Chinese). | |
21 | FOLKNER W M, WILLIAMS J G, BOGGS D H. The planetary and lunar Ephemeris DE421: IOM 343R-08-003[R]. Pasadena: Jet Propulsion Laboratory, 2008. |
22 | 汪中生, 孟占峰, 高珊, 等. 嫦娥五号月球轨道交会对接远程导引轨道设计与飞行实践[J]. 宇航学报, 2021, 42(8): 939-952. |
WANG Z S, MENG Z F, GAO S, et al. Phasing orbit design and flight test of lunar orbit RVD in Chang' e-5 mission[J]. Journal of Astronautics, 2021, 42(8): 939-952 (in Chinese). |
/
〈 |
|
〉 |