电子电气工程与控制

基于多策略GWO算法的不确定环境下异构多无人机任务分配

  • 张安 ,
  • 杨咪 ,
  • 毕文豪 ,
  • 张百川 ,
  • 王雨农
展开
  • 西北工业大学 航空学院,西安 710072
. E-mail: yangmi@mail.nwpu.edu.cn

收稿日期: 2022-03-07

  修回日期: 2022-03-29

  录用日期: 2022-04-28

  网络出版日期: 2022-05-09

基金资助

国家自然科学基金(62073267);航空科学基金(201905053001);西北工业大学新兴交叉学科方向项目专项资金

Task allocation of heterogeneous multi-UAVs in uncertain environment based on multi-strategy integrated GWO

  • An ZHANG ,
  • Mi YANG ,
  • Wenhao BI ,
  • Baichuan ZHANG ,
  • Yunong WANG
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2022-03-07

  Revised date: 2022-03-29

  Accepted date: 2022-04-28

  Online published: 2022-05-09

Supported by

National Natural Science Foundation of China(62073267);Aeronautical Science Foundation of China(201905053001);Research Funds for Interdisciplinary Subject (NWPU)

摘要

针对具有复杂约束的异构多无人机对地目标侦察打击任务分配问题,考虑不确定的任务执行时长、目标消失时间和无人机巡航速度等不确定因素对任务分配结果的影响,基于模糊可信性理论构建以最小化总成本为优化目标的异构多无人机任务分配的模糊机会约束规划模型,并提出一种多策略融合的灰狼优化算法(IMSGWO),通过引入自适应控制参数调整策略、自适应惯性权重策略、最优学习策略与跳出局部最优策略,在增强种群多样性的同时,提高算法的搜索能力。数值分析结果表明:所提算法能够有效求解不确定环境下的异构多无人机任务分配问题。

本文引用格式

张安 , 杨咪 , 毕文豪 , 张百川 , 王雨农 . 基于多策略GWO算法的不确定环境下异构多无人机任务分配[J]. 航空学报, 2023 , 44(8) : 327115 -327115 . DOI: 10.7527/S1000-6893.2022.27115

Abstract

To solve the problem of task allocation in reconnaissance and attack on ground targets by multi-UAVs with complex constraints, the impact of multiple uncertain factors such as uncertain task execution time, target disappearance time and UAV cruise speed on the task allocation results is considered. A fuzzy chance constrained programming model for multi-UAV task allocation is constructed based on the fuzzy credibility theory, with minimization of the total cost as the optimization goal. In addition, a Multi-Strategy Integrated Grey Wolf Optimization (IMSGWO) algorithm is proposed. By introducing the adaptive control parameter adjustment strategy, adaptive inertia weight strategy, optimal learning strategy and jumping out of local optimal strategy, the search ability of the algorithm is improved while enhancing population diversity. Numerical results show that the proposed algorithm can effectively solve the problem of multi-UAV task allocation in uncertain environment.

参考文献

1 杜永浩, 邢立宁, 蔡昭权. 无人飞行器集群智能调度技术综述[J]. 自动化学报202046(2): 222-241.
  DU Y H, XING L N, CAI Z Q. Survey on intelligent scheduling technologies for unmanned flying craft clusters[J]. Acta Automatica Sinica202046(2): 222-241 (in Chinese).
2 沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报201435(3): 593-606.
  SHEN L C, CHEN J, WANG N. Overview of air vehicle mission planning techniques[J]. Acta Aeronautica et Astronautica Sinica201435(3): 593-606 (in Chinese).
3 陈璞, 严飞, 刘钊, 等. 通信约束下异构多无人机任务分配方法[J]. 航空学报202142(8): 525844.
  CHEN P, YAN F, LIU Z, et al. Communication-constrained task allocation of heterogeneous UAVs[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525844 (in Chinese).
4 陈志旺, 夏顺, 李建雄, 等. 考虑分配次序的无人机协同目标分配建模与遗传算法求解[J]. 控制理论与应用201936(7): 1072-1082.
  CHEN Z W, XIA S, LI J X, et al. Modeling of unmanned aerial vehicles cooperative target assignment with allocation order and its solving of genetic algorithm[J]. Control Theory & Applications201936(7): 1072-1082 (in Chinese).
5 张云飞, 林德福, 郑多, 等. 多目标时空同步协同攻击无人机任务分配与轨迹优化[J]. 兵工学报202142(7): 1482-1495.
  ZHANG Y F, LIN D F, ZHENG D, et al. Task allocation and trajectory optimization of UAV for multi-target time-space synchronization cooperative attack[J]. Acta Armamentarii202142(7): 1482-1495 (in Chinese).
6 郭继峰, 郑红星, 贾涛, 等. 异构无人系统协同作战关键技术综述[J]. 宇航学报202041(6): 686-696.
  GUO J F, ZHENG H X, JIA T, et al. Summary of key technologies for heterogeneous unmanned system cooperative operations[J]. Journal of Astronautics202041(6): 686-696 (in Chinese).
7 CHEN Y, YUAN Z H, CHEN B Z. Process optimization with consideration of uncertainties—An overview[J]. Chinese Journal of Chemical Engineering201826(8): 1700-1706.
8 吴蔚楠, 崔乃刚, 郭继峰. 基于目标信息估计的分布式局部协调任务分配方法[J]. 控制理论与应用201835(4): 566-576.
  WU W N, CUI N G, GUO J F. Distributed task assignment method based on local information consensus and target estimation[J]. Control Theory & Applications201835(4): 566-576 (in Chinese).
9 KAN X Y, THAYER T C, CARPIN S, et al. Task planning on stochastic aisle graphs for precision agriculture[J]. IEEE Robotics and Automation Letters20216(2): 3287-3294.
10 JIA Z Y. Cooperative multiple task assignment problem with stochastic velocities and time windows for heterogeneous unmanned aerial vehicles using a genetic algorithm[J]. Aerospace Science and Technology201876: 112-125.
11 CHEN Y B, YANG D, YU J Q. Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems201854(6): 2853-2872.
12 何勇, 张成义, 李姗姗. 基于两阶段鲁棒优化的无人机载机平台调度问题[J]. 系统工程学报202035(6): 838-848, 864.
  HE Y, ZHANG C Y, LI S S. Unmanned aerial vehicle carriers scheduling problem based on two-stage robust optimization[J]. Journal of Systems Engineering202035(6): 838-848, 864 (in Chinese).
13 赵玉亮, 宋业新, 赵金超, 等. 基于鲁棒优化的多无人机协同侦察任务规划[J]. 海军工程大学学报202133(1): 48-54.
  ZHAO Y L, SONG Y X, ZHAO J C, et al. Multi-UAV cooperative reconnaissance mission planning based on robust optimization[J]. Journal of Naval University of Engineering202133(1): 48-54 (in Chinese).
14 WHITBROOK A, MENG Q G, CHUNG P W H. Addressing robustness in time-critical, distributed, task allocation algorithms[J]. Applied Intelligence201949(1): 1-15.
15 李成严, 曹克翰, 冯世祥, 等. 不确定执行时间的云计算资源调度[J]. 哈尔滨理工大学学报201924(1): 85-91.
  LI C Y, CAO K H, FENG S X, et al. Resource scheduling with uncertain execution time in cloud computing[J]. Journal of Harbin University of Science and Technology201924(1): 85-91 (in Chinese).
16 范厚明, 吴嘉鑫, 耿静, 等. 模糊需求与时间窗的车辆路径问题及混合遗传算法求解[J]. 系统管理学报202029(1): 107-118.
  FAN H M, WU J X, GENG J, et al. Hybrid genetic algorithm for solving fuzzy demand and time windows vehicle routing problem[J]. Journal of Systems & Management202029(1): 107-118 (in Chinese).
17 KIM J, KIM T, PARK M, et al. Fuzzy-based resource reallocation scheduling model in cloud computing[C]∥ Frontier and Innovation in Future Computing and Communications, 2014: 43-48.
18 赵玉亮, 宋业新, 张建军, 等. 基于多策略融合粒子群的无人机对地攻击模糊博弈决策[J]. 控制理论与应用201936(10): 1644-1652.
  ZHAO Y L, SONG Y X, ZHANG J J, et al. Fuzzy game decision-making of unmanned aerial vehicles air-to-ground attack based on the particle swarm optimization integrating multiply strategies[J]. Control Theory & Applications201936(10): 1644-1652 (in Chinese).
19 MIRJALILI S. Grey wolf optimizer[J]. Advances in Engineering Software201469: 46-61.
20 NADIMI-SHAHRAKI M H. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems With Applications2021166: 113917.
21 范厚明, 刘浩, 刘鹏程, 等. 集货需求模糊的异型车同时配集货路径优化[J]. 控制理论与应用202138(5): 661-675.
  FAN H M, LIU H, LIU P C, et al. Heterogeneous fleet vehicle routing problem with simultaneous deterministic delivery and fuzzy pickup[J]. Control Theory & Applications202138(5): 661-675 (in Chinese).
22 WHITBROOK A, MENG Q G, CHUNG P W H. Reliable, distributed scheduling and rescheduling for time-critical, multiagent systems[J]. IEEE Transactions on Automation Science and Engineering201815(2): 732-747.
文章导航

/