斜掠气梁充气翼湿模态分析与试验
收稿日期: 2022-03-02
修回日期: 2022-03-18
录用日期: 2022-04-21
网络出版日期: 2022-05-09
基金资助
国家自然科学基金(11902029)
Wet modal analysis and tests for inflatable wing with swept air-beams
Received date: 2022-03-02
Revised date: 2022-03-18
Accepted date: 2022-04-21
Online published: 2022-05-09
Supported by
National Natural Science Foundation of China(11902029)
参考气动弹性剪裁思想,通过将充气翼内部气梁沿展向偏转一定角度设计一种新型斜掠气梁充气翼。针对充气翼结构动力学特性研究需要对考虑周围空气影响的湿模态进行分析,在考虑空气附加质量影响和流场对于系统刚度贡献的前提下,发展了一种针对柔性充气结构湿模态快速建模分析的附加质量-刚度法。在柔性充气管算例验证了所提方法有效性的基础上,完成了对传统直梁充气翼和斜掠气梁充气翼湿模态的仿真研究,并与地面振动试验(GVT)结果进行对比分析。结果表明,3种充气翼湿模态仿真结果与试验结果均吻合较好,充气翼结构固有频率随充气内压上升而增加,同时相比于传统直梁充气翼,斜掠气梁充气翼第1阶与第2阶模态具有更低的固有频率之比,且弦向模态能够显著消除,对改善充气翼飞行器的气弹性能具有重要意义。
孟繁敏 , 马诺 , 马文朝 , 孟军辉 , 李文光 . 斜掠气梁充气翼湿模态分析与试验[J]. 航空学报, 2023 , 44(2) : 227098 -227098 . DOI: 10.7527/S1000-6893.2022.27098
Based on the idea of aeroelastic tailoring, a new type of inflatable wings with swept air-beams is designed by deflecting the air beam inside the inflatable wing along the spanwise direction. The wet mode concerning the influence of ambient air is necessary for the research on the dynamic characteristics of inflatable wings, and a method named added mass-stiffness method considering the added mass and stiffness contribution of air is proposed to rapidly model and precisely analyze the wet mode of flexible inflatable structures. The proposed method is verified by an inflatable tube example, and applied to the traditional baffled inflatable wings and the new type with swept air-beams. The comparison between the simulation and Ground Vibration Test (GVT) results shows that the simulation results of three inflatable wings are in good agreement with the test results. The natural frequencies of the inflatable wings are on the rise with the increasing internal pressure, and for the new type of inflatable wings with swept air-beams, the natural frequency ratio of Mode 1 and Mode 2 is lower than that of the traditional baffled type, while the chordwise bending mode is also eliminated, which is valuable for improving the aeroelasticity of inflatable wings.
1 | 邓坤, 安海霞, 陈伟. 柔性翼飞行器现状及关键技术分析[J]. 航天返回与遥感, 2016, 37(5): 19-26. |
DENG K, AN H X, CHEN W. Study of the status and critical techniques of flexible wing aircraft[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5): 19-26 (in Chinese). | |
2 | CADOGAN D, SMITH T, LEE R, et al. Inflatable and rigidizable wing components for unmanned aerial vehicles[C]∥44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
3 | PULLIAM W, NORRIS R. Historical perspective on inflatable wing structures[C]∥50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009. |
4 | 步禹宏, 杨燕初. 一种非对称充气机翼的设计方法与力学分析[J]. 计算机仿真, 2021, 38(12): 44-50, 236. |
BU Y H, YANG Y C. Research of designing methods and dynamics analysis of asymmetrical inflatable wing[J]. Computer Simulation, 2021, 38(12): 44-50, 236 (in Chinese). | |
5 | 霍文霞, 闵昌万, 焦子涵, 等. 一种高速充气翼设计与流固耦合研究[J]. 导弹与航天运载技术, 2019(1): 6-10. |
HUO W X, MIN C W, JIAO Z H, et al. High-speed inflatable wing design and fluid-structure interaction analysis[J]. Missiles and Space Vehicles, 2019(1): 6-10 (in Chinese). | |
6 | PANWAR S S, GUPTA R, ARIS A, et al. 3D-photogrammetric modal testing and data analysis of a cantilevered inflatable wing[C]∥AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
7 | SONG Y Y, GANDHI U, ARIS A. A baffled inflatable wing made from high performance textile materials: Design, analysis, and experiments[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
8 | 冯志壮, 李斌. 表面凹凸充气机翼的气动特性研究[J]. 航空工程进展, 2014, 5(1): 38-45. |
FENG Z Z, LI B. Investigation of aerodynamic behavior for bumpy inflatable wing[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1): 38-45 (in Chinese). | |
9 | 王伟, 王华, 贾清萍. 充气机翼承载能力和气动特性分析[J]. 航空动力学报, 2010, 25(10): 2296-2301. |
WANG W, WANG H, JIA Q P. Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J]. Journal of Aerospace Power, 2010, 25(10): 2296-2301 (in Chinese). | |
10 | 张俊韬, 侯中喜, 郭正. 高雷诺数二维充气机翼构形的气动特性[J]. 航空动力学报, 2017, 32(3): 657-665. |
ZHANG J T, HOU Z X, GUO Z. Aerodynamic performance of configurations of two-dimension inflatable wings under high Reynolds number[J]. Journal of Aerospace Power, 2017, 32(3): 657-665 (in Chinese). | |
11 | 李斌, 董楠楠, 冯志壮, 等. 充气机翼的褶皱与失效行为研究[J]. 航空学报, 2016, 37(10): 3044-3053. |
LI B, DONG N N, FENG Z Z, et al. Wrinkling and failure behavior research of inflated wing[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3044-3053 (in Chinese). | |
12 | 杨永强, 马云鹏, 武哲. 基于流固耦合的充气翼内压对翼面变形影响分析[J]. 北京航空航天大学学报, 2014, 40(2): 188-192. |
YANG Y Q, MA Y P, WU Z. Analysis of effect of interior pressure to deformation of inflatable wing with fluid-structure interaction analysis method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 188-192 (in Chinese). | |
13 | BROWN A, JOHNSON E. Modeling and flight testing of the longitudinal dynamics of an inflatable wing UAV[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2011. |
14 | CARBONE G, MARTINAT G, FARCY D, et al. Added masses of generic shape bodies interacting with external walls[J]. Aerospace Science and Technology, 2019, 90: 70-84. |
15 | CERUTI A, GAMBACORTA D, MARZOCCA P. Unconventional hybrid airships design optimization accounting for added masses[J]. Aerospace Science and Technology, 2018, 72: 164-173. |
16 | HU Y, CHEN W J, CHEN Y F, et al. Modal behaviors and influencing factors analysis of inflated membrane structures[J]. Engineering Structures, 2017, 132: 413-427. |
17 | 柳瑞锋, 黄嵘, 周相荣, 等. 船体低阶湿模态计算方法对比研究[J]. 船舶工程, 2014, 36(4): 25-28. |
LIU R F, HUANG R, ZHOU X R, et al. Contrast study on calculation method for lower order wet mode of ship hull[J]. Ship Engineering, 2014, 36(4): 25-28 (in Chinese). | |
18 | 高海健, 陈务军, 付功义. 预应力薄膜充气梁模态的分析方法及特性[J]. 华南理工大学学报(自然科学版), 2010, 38(7): 135-139. |
GAO H J, CHEN W J, FU G Y. Modal analysis method and modal behavior of prestressed inflatable fabric beam[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(7): 135-139 (in Chinese). | |
19 | 张祎贝, 陈务军, 邓小伟, 等. 薄膜结构空气与低真空环境下模态辨识仿真及试验[J]. 振动与冲击, 2020, 39(20): 168-174, 182. |
ZHANG Y B, CHEN W J, DENG X W, et al. Simulation and experiment for membrane modal identification in the air and low vacuum environment[J]. Journal of Vibration and Shock, 2020, 39(20): 168-174, 182 (in Chinese). | |
20 | 邱振宇, 陈务军, 赵兵, 等. 充气尾翼湿模态分析与试验研究[J]. 振动与冲击, 2016, 35(15): 140-143, 148. |
QIU Z Y, CHEN W J, ZHAO B, et al. Wet modal analysis and tests for pneumatic empennages[J]. Journal of Vibration and Shock, 2016, 35(15): 140-143, 148 (in Chinese). | |
21 | 邱振宇, 陈务军, 赵兵, 等. 飞艇主气囊结构湿模态分析与试验研究[J]. 振动与冲击, 2017, 36(12): 61-67, 82. |
QIU Z Y, CHEN W J, ZHAO B, et al. Wet modal analysis and experiment study on an airship envelop[J]. Journal of Vibration and Shock, 2017, 36(12): 61-67, 82 (in Chinese). | |
22 | 陈宇峰, 陈务军, 何艳丽, 等. 柔性飞艇主气囊干湿模态分析与影响因素[J]. 上海交通大学学报, 2014, 48(2): 234-238, 243. |
CHEN Y F, CHEN W J, HE Y L, et al. Dry and wet modal analysis and evaluation of influencing factors for flexible airship envelop[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2): 234-238, 243 (in Chinese). | |
23 | 陈宇峰, 陈务军, 邱振宇, 等. 空气对预应力薄膜结构模态的影响[J]. 浙江大学学报(工学版), 2015, 49(6): 1123-1127. |
CHEN Y F, CHEN W J, QIU Z Y, et al. Effects of air on modal behavior of pre-stressed membrane structure[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(6): 1123-1127 (in Chinese). | |
24 | 谢长川, 王伟建, 杨超. 充气式机翼的颤振特性分析[J]. 北京航空航天大学学报, 2011, 37(7): 833-838. |
XIE C C, WANG W J, YANG C. Flutter analysis of inflatable wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 833-838 (in Chinese). | |
25 | 金咸定, 夏利娟. 船体振动学[M]. 上海: 上海交通大学出版社, 2011: 128-162. |
JIN X D, XIA L J. Hull dynamics [M]. Shanghai: Shanghai Jiao Tong University Press, 2011: 128-162 (in Chinese). | |
26 | 谢多夫. 连续介质力学 [M]. 第6版. 北京: 高等教育出版社, 2007: 111-125. |
SEDOV L Z. Continuum mechanics [M]. 6th ed.Beijing: Higher Education Press, 2007:111-125 (in Chinese). | |
27 | 王仁. 力学模型及其局限性[J]. 力学与实践, 2001, 23(2): 70-72. |
WANG R. Mechanical models and their limitations [J]. Mechanics and Engineering, 2001, 23(2): 70-72 (in Chinese). | |
28 | 王敏中,王炜,武际可. 弹性力学教程[M]. 修订版. 北京: 北京大学出版社, 2011: 71-90. |
WANG M Z, WANG W, WU J K.Elastic mechanics tutorial [M]. revised edition. Beijing: Peking University Press, 2011: 71-90 (in Chinese). | |
29 | ZHAO W, DESAI S, MIGLANI J, et al. Structural and aeroelastic design, analysis, and experiments of inflatable airborne wings[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
30 | 孟军辉, 张艳博, 吕明云. 平流层飞艇蒙皮材料织物纤维拔出过程分析[J]. 北京航空航天大学学报, 2014, 40(8): 1149-1153. |
MENG J H, ZHANG Y B, Lü M Y. Extracting process of stratospheric airship envelop fabric fiber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8): 1149-1153 (in Chinese). | |
31 | 孟军辉, 曹帅, 吕明云. 平流层飞艇蒙皮材料撕裂性能分析方法[J]. 宇航学报, 2015, 36(2): 230-235. |
MENG J H, CAO S, LV M Y. Analysis methods for tear properties of stratospheric airship envelope materials[J]. Journal of Astronautics, 2015, 36(2): 230-235 (in Chinese). | |
32 | 孟军辉, 张一, 刘东旭, 等. 升力体式浮升混合飞艇设计及参数分析[J]. 航空学报, 2015, 36(5): 1500-1510. |
MENG J H, ZHANG Y, LIU D X, et al. Design and parameter analysis of liftbody-type buoyancy-lifting hybrid airships[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1500-1510 (in Chinese). | |
33 | 王伟建,谢长川,杨超. 充气式翼面的振动与颤振特性分析[C]∥2011年中国浮空器大会论文集,2011: 180-189. |
WANG W J, XIE C C, YANG C. Analysis of vibration and flutter characteristics of inflatable wings [C]∥China Aerostat Conference, 2011: 180-189 (in Chinese). | |
34 | SUDDUTH C. Design of a hybrid rocket/inflatable wing UAV[D]. Oklahoma: Oklahoma State University, 2012: 70-122. |
35 | BOOKER A, FATHEPURE M, NELSEN T, et al. Conceptual design of an inflatable-winged aircraft for the exploration of titan[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
36 | 陈桂彬, 杨超, 邹丛青. 气动弹性设计基础[M]. 2版. 北京: 北京航空航天大学出版社, 2010: 79-94. |
CHEN G B, YANG C, ZOU C Q. Aeroelastic design fundamentals [M].2nd ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2010: 79-94 (in Chinese). | |
37 | 威廉·P. 罗登.万志强译. 气动弹性力学理论与计算[M]. 北京: 航空工业出版社, 2014:223-256. |
WILLIAM P R.WAN Z Q translater.Theoretical and computational aeroelasticity[M]. Beijing: Aviation Industry Press, 2014: 223-256 (in Chinese). | |
38 | 李卓然. ETFE气枕气-膜耦合作用的试验研究与数值模拟[D]. 北京: 北京交通大学, 2020: 25-37. |
LI Z R. Experimental and numerical study on the air-membrane interaction of ETFE cushions[D]. Beijing: Beijing Jiaotong University, 2020: 25-37 (in Chinese). | |
39 | 余建新, 卫剑征, 谭惠丰. 薄膜充气环动态特性试验研究[J]. 振动与冲击, 2013, 32(7): 11-16. |
YU J X, WEI J Z, TAN H F. Tests for thin film inflatable toruses[J]. Journal of Vibration and Shock, 2013, 32(7): 11-16 (in Chinese). | |
40 | GRIFFITH D T, MAIN J A. Experimental modal analysis and damping estimation for an inflated thin-film torus[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 609-617. |
/
〈 |
|
〉 |