综述

喷气式客机层流翼气动设计综述

  • 杨体浩 ,
  • 白俊强 ,
  • 段卓毅 ,
  • 史亚云 ,
  • 邓一菊 ,
  • 周铸
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 航空工业第一飞机设计研究院, 西安 710089;
    3. 西安交通大学 航空航天学院, 西安 710049;
    4. 中国空气动力研究与发展中心, 绵阳 621000

收稿日期: 2022-01-29

  修回日期: 2022-03-09

  网络出版日期: 2022-05-09

基金资助

国家自然科学基金(11902320,12002284)

Aerodynamic design of laminar flow wings for jet aircraft: Review

  • YANG Tihao ,
  • BAI Junqiang ,
  • DUAN Zhuoyi ,
  • SHI Yayun ,
  • DENG Yiju ,
  • ZHOU Zhu
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC The First Aircraft Design and Researoh Institute, Xi'an 710089, China;
    3. School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
    4. China Aerodynamic Research and Development Center, Mianyang 621000, China

Received date: 2022-01-29

  Revised date: 2022-03-09

  Online published: 2022-05-09

Supported by

National Natural Science Foundation of China (11902320,12002284)

摘要

层流技术是未来发展"绿色航空"的核心技术,巨大的减阻潜力使其成为航空领域内的研究热点。从喷气式客机具有的流动物理特征和转捩现象本质出发,阐述了自然层流(NLF)和混合层流(HLFC)技术的实现原理和适用范围,综述了国际上NLF/HLFC技术的研究现状及发展趋势。围绕基于CFD的层流翼设计技术前沿问题,从面向工程应用的转捩预测方法、非梯度类优化、梯度优化以及不确定性分析和鲁棒优化多个层面,系统论述了层流翼设计方法的研究现状和最新进展。同时,讨论了层流翼气动设计与全湍流气动设计问题的异同点,梳理了NLF和HLFC机翼气动设计理论。最后,顺应喷气式客机技术发展趋势,总结了层流设计技术面临的问题,给出了层流翼气动优化设计技术的未来发展方向和建议。

本文引用格式

杨体浩 , 白俊强 , 段卓毅 , 史亚云 , 邓一菊 , 周铸 . 喷气式客机层流翼气动设计综述[J]. 航空学报, 2022 , 43(11) : 527016 -527016 . DOI: 10.7527/S1000-6893.2022.27016

Abstract

The laminar flow technology is the core technology for the future development of "green aviation", and its huge drag reduction potential makes it a research hotspot in the aviation field. This article starts from the physical characteristics of flow and the nature of transition phenomena of jet airliners, and expounds the realization principle and application scope of the NLF and HLFC technology. The global research status and development trend of the NLF/HLFC technology are reviewed. Focusing on the cutting-edge issues of the CFD-based laminar flow wing design technology, we systematically discuss the laminar flow from multiple levels of engineering application-oriented transition prediction methods, gradient-free/gradient-based optimization methods, uncertainty analysis and the robust optimization method. Meanwhile, the similarities and differences between the laminar flow wing aerodynamic design and full turbulent aerodynamic design are discussed, and the aerodynamic design theories of the NLF and HLFC wing are then sorted out. Finally, based on the development trend of the jet airliner technology, the problems faced by the laminar flow design technology are summarized, and the future development direction and suggestions for the aerodynamic optimization design technology of laminar flow wings are presented.

参考文献

[1] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91.
[2] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191.
[3] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.
[4] COLLIER F. Overview of NASA's environmentally responsible aviation (ERA) project[C]//NASA Environmentally Responsible Aviation Project Pre-Proposal Meeting, 2010.
[5] SARIC W S, REED H L, WHITE E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35(1):413-440.
[6] PAREDES P, VENKATACHARI B S, CHOUDHARI M M, et al. Transition analysis for the CRM-NLF wind tunnel configuration[C]//AIAA SCITECH 2021 Forum. Reston:AIAA, 2021.
[7] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[8] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[9] URANGA A, DRELA M, GREITZER E M, et al. Boundary layer ingestion benefit of the D8 transport aircraft[J]. AIAA Journal, 2017, 55(11):3693-3708.
[10] CAVALLARO R, DEMASI L. Challenges, ideas, and innovations of joined-wing configurations:A concept from the past, an opportunity for the future[J]. Progress in Aerospace Sciences, 2016, 87:1-93.
[11] ORR W M. The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. part II:A viscous liquid[J]. Proceedings of the Royal Irish Academy Section A:Mathematical and Physical Sciences, 1907, 27:69-138.
[12] SCHLICHTING H, GERSTE K. Grenzschicht-theorie[M]. Berlin:Springer-Verlag, 2006:27-47.
[13] RESHOTKO E. Laminar flow control-viscous simulation:N84-33757[R]. Pairs:AGARD, 1984.
[14] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52.
[15] KREIN P, AHMAD A. Selected current challenges in the development of hybrid laminar flow control on transport aircraft[C]//Deutscher Luft-und Raumfahrtkongress. Darmstadt:DGLR, 2019.
[16] ABBOTT I H, DOENHOFF A E, STIVERS J L, et al. Summary of airfoil data:NACA-TR-824[R]. Washington, D.C.:NASA, 1945.
[17] BRASLOW A L. A history of suction-type laminar flow control with emphasis on flight research[M]. Charleston:CreateSpace Independent Publishing Platform, 2013.
[18] JOSLIN R. D. Overview of laminar flow control:TP-1998-208705[R]. Washington, D.C.:NASA, 1998.
[19] WAGNER R, BARTLETT D, COLLIER J F. Laminar flow-the past, present, and prospects[C]//2nd Shear Flow Conference. Reston:AIAA, 1989.
[20] RUNYAN L, BIELAK G, BEHBEHANI R, et al. The 757 NLF glove flight test results:NASA-CR-12546[R]. Washington, D.C.:NASA, 1987.
[21] HANKS G W, MOYER A E, NAGEL A L. Hybrid laminar flow control study final technical report:NASA-CR-165930[R]. Washington, D.C.:NASA, 1982.
[22] BOBBITT P J, FERRIS J C, HARVEY W D, et al. Results for the hybrid laminar flow control experiment conducted in the NASA Langley 8-foot transonic pressure tunnel on a 7-foot chord model:NASA-TM-107582[R]. Washington, D.C.:NASA, 1992.
[23] COLLIER J F JR. An overview of recent subsonic laminar flow control flight experiments[C]//24rd Fluid Dynamics Conference. Reston:AIAA, 1993.
[24] RIEDEL H, SITZMANN M. In-flight investigations of atmospheric turbulence[J]. Aerospace Science and Technology, 1998, 2(5):301-319.
[25] SCHRAUF G. Large-scale laminar flow tests evaluated with linear stability theory[J]. Journal of Aircraft, 2004, 41(2):224-230.
[26] SCHRAUF G. On allowable step heights:lessons learned from the F100 and ATTAS flight tests[C]//6th European Conference on Computational Mechanics, 2018.
[27] FITON J. Lessons learned from Dassault's Falcon 900 HLFC demonstrator[C]//CEAS/DragNet European Drag Reduction Conference, 2000.
[28] THIBERT J J, QUEST A, ROBERT J P. The A320 laminar fin programme[C]//First European Forum on Laminar Flow Technology, 1992.
[29] FUJINO M. Design and development of the HondaJet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[30] CROUCH J. Boundary-layer transition prediction for laminar flow control[C]//45th AIAA Fluid Dynamics Conference. Reston:AIAA, 2015.
[31] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.
[32] VERMEERSCH O, MERY F, SAINGES O, et al. BLADE SESSION analysis of receptivity flight tests[C]//1st Aerospace Europe Conference, 2020.
[33] RIVERS M B. NASA common research model:A history and future plans[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019.
[34] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014.
[35] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese).
[36] 乔志德, 赵文华, 李育斌, 等. 超临界自然层流翼型NPU-L72513的风洞试验研究[J]. 气动实验与测量控制, 1993, 7(2):40-45. QIAO Z D, ZHAO W H, LI Y B, et al. The transonic wind tunnel test research for the supercritical natural laminar airfoil npu-l72513[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(2):40-45(in Chinese).
[37] ZHU J, GAO Z H, ZHAN H, et al. A high-speed nature laminar flow airfoil and its experimental study in wind tunnel with nonintrusive measurement technique[J]. Chinese Journal of Aeronautics, 2009, 22(3):225-229.
[38] 赖国俊, 李政德, 张颖哲. 自然层流翼型高雷诺数风洞试验研究[J]. 航空科学技术, 2017, 28(8):12-15. LAI G J, LI Z D, ZHANG Y Z. Research on natural laminar airfoil wind tunnel test at high Reynolds number[J]. Aeronautical Science & Technology, 2017, 28(8):12-15(in Chinese).
[39] 杜玺, 闫海津, 吴宇昂, 等. 跨声速自然层流短舱气动设计和风洞试验研究[J]. 航空科学技术, 2019, 30(9):63-72. DU X, YAN H J, WU Y A, et al. Aerodynamic design and wind tunnel test of a transonic natural laminar flow nacelle[J]. Aeronautical Science & Technology, 2019, 30(9):63-72(in Chinese).
[40] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[41] SHI Y Y, YANG T H, BAI J Q, et al. Research of transition criterion for semi-empirical prediction method at specified transonic regime[J]. Aerospace Science and Technology, 2019, 88:95-109.
[42] 钟海, 王启, 杨体浩. 层流翼型阻力测量试飞技术研究[J]. 飞行力学, 2021, 39(2):33-38. ZHONG H, WANG Q, YANG T H. Research on flight test technology for drag measurement of laminar airfoil[J]. Flight Dynamics, 2021, 39(2):33-38(in Chinese).
[43] 耿子海, 刘双科, 王勋年, 等. 二维翼型混合层流控制减阻技术试验研究[J]. 实验流体力学, 2010, 24(1):46-50. GENG Z H, LIU S K, WANG X N, et al. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):46-50(in Chinese).
[44] 王菲, 额日其太, 王强, 等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010, 25(4):918-924. WANG F, ERIQITAI, WANG Q, et al. Experimental investigation of HLFC mechanism on swept wing[J]. Journal of Aerospace Power, 2010, 25(4):918-924(in Chinese).
[45] SHI Y Y, CAO T S, YANG T H, et al. Estimation and analysis of hybrid laminar flow control on a transonic experiment[J]. AIAA Journal, 2019, 58(1):118-132.
[46] YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8):34-47.
[47] 王猛, 钟海, 衷洪杰, 等. 红外热像边界层转捩探测的飞行试验应用研究[J]. 空气动力学学报, 2019, 37(1):160-167. WANG M, ZHONG H, ZHONG H J, et al. Flight test applications of boundary layer transition detection method using IR technique[J]. Acta Aerodynamica Sinica, 2019, 37(1):160-167(in Chinese).
[48] YANG T H, CHEN Y F, SHI Y Y, et al. Stochastic investigation on the robustness of laminar-flow wings for flight tests[J]. AIAA Journal, 2022, 60(4):2266-2286.
[49] MESSING R, KLOKER M J. Investigation of suction for laminar flow control of three-dimensional boundary layers[J]. Journal of Fluid Mechanics, 2010, 658:117-147.
[50] COMTE F D P, LESIEUR M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326:1-36.
[51] VASSBERG J, BUNING P, RUMSEY C. Drag prediction for the DLR-F4 wing/body using OVERFLOW and CFL3D on an overset mesh[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002.
[52] JESPERSEN D, PULLIAM T, BUNING P, et al. Recent enhancements to OVERFLOW (Navier-Stokes code)[C]//35th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 1997.
[53] KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110:100542.
[54] NIELSEN E J, DISKIN B. Discrete adjoint-based design for unsteady turbulent flows on dynamic overset unstructured grids[J]. AIAA Journal, 2013, 51(6):1355-1373.
[55] MA B P, WANG G, REN J, et al. Near field sonic boom analysis with HUNS3D solver[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017.
[56] 杨一雄, 杨体浩, 白俊强, 等. HLFC后掠翼优化设计的若干问题[J]. 航空学报, 2018, 39(1):121448. YANG Y X, YANG T H, BAI J Q, et al. Problems in optimization design of HLFC sweep wing[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121448(in Chinese).
[57] CEBECI T. Stability and transition:Theory and application:Efficient numerical methods with computer programs[M]. Berlin:Springer, 2004:1-262.
[58] GASTER M. A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability[J]. Journal of Fluid Mechanics, 1962, 14(2):222-224.
[59] MACK L M. Boundary-layer linear stability theory:ADP004046[R]. Virginia:Defense Technical Information Center, 1984.
[60] MALIK M R, ORSZAG S A. Linear stability analysis of three-dimensional compressible boundary layers[J]. Journal of Scientific Computing, 1987, 2(1):77-97.
[61] MALIK M R. Numerical methods for hypersonic boundary layer stability[J]. Journal of Computational Physics, 1990, 86(2):376-413.
[62] ARNAL D. Boundary layer transition:predictions based on linear theory:N94-33884[R]. Paris:AGARD, 1994.
[63] CHEN H H, CEBECI T. An evaluation of stability-based methods for transition of three-dimensional flows[M]//Laminar-turbulent transition. Berlin:Springer, 1990:327-336.
[64] CEBECI T, STEWARTSON K. On stability and transition in three-dimensional flows[J]. AIAA Journal, 1980, 18(4):398-405.
[65] 苏彩虹. 高超声速边界层转捩预测中的关键科学问题:感受性、扰动演化及转捩判据研究进展[J]. 空气动力学学报, 2020, 38(2):355-367. SU C H. Progress in key scientific problems of hypersonic bounary-layer transition prediction:Receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica, 2020, 38(2):355-367(in Chinese).
[66] HERBERT T, BERTOLOTTI F P. Stability analysis of nonparallel boundary layers[J]. Bulletin of the American Physical Society, 1987, 32(2079):590.
[67] 刘一方. 超声速平板边界层二次失稳和斜波失稳研究[D]. 天津:天津大学, 2011. LIU Y F. A study of the secondary instability and oblique mode breakdown in the supersonic flat-plate boundary layers[D]. Tianjin:Tianjin University, 2011(in Chinese).
[68] 赵磊. 高超声速后掠钝板边界层横流定常涡失稳的研究[D]. 天津:天津大学, 2017. ZHAO L. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layers[D]. Tianjin:Tianjin University, 2017(in Chinese).
[69] 徐国亮, 刘刚, 江雄. Ma数对后掠机翼流动非线性失稳的影响[J]. 中国科学:物理学力学天文学, 2014, 44(7):759-770. XU G L, LIU G, JIANG X. The Mach number effect on the nonlinear instability of swept-wing flows[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(7):759-770(in Chinese).
[70] STREIT T, HORSTMANN K, SCHRAUF G, et al. Complementary numerical and experimental data analysis of the ETW Telfona Pathfinder wing transition tests[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[71] 杨体浩, 史亚云, 王雨桐, 等. 基于离散伴随的层流翼优化设计方法研究[J/OL]. 航空学报,(2022-06-29)[2022-08-26]. https://kns.cnki.net/kns8/defaultresult/index. YANG T H, SHI Y Y, WANG Y T, et al. The discrete adjoint-based optimization approach study for laminar flow wings[J/OL]. Acta Aeronautica et Astronautica Sinica,(2022-06-29)[2022-08-26]. https://kns.cnki.net/kns8/defaultresult/index (in Chinese).
[72] SHI Y Y, MADER C A, HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722.
[73] SHI Y Y, MADER C A, MARTINS J R R A. Natural laminar flow wing optimization using a discrete adjoint approach[J].Structural and Multidisciplinary Optimization, 2021, 64(2):541-562.
[74] ARNAL D. Transition prediction in transonic flow[M]. Berlin:Springer Berlin Heidelberg, 1989:253-262.
[75] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684.
[76] KRUMBEIN A, KRIMMELBEIN N, SCHRAUF G. Automatic transition prediction in hybrid flow solver, part 1:Methodology and sensitivities[J]. Journal of Aircraft, 2009, 46(4):1176-1190.
[77] LIAO W, MALIK M R, LEE-RAUSCH E M, et al. Boundary-layer stability analysis of the Mean flows obtained using unstructured grids[J]. Journal of Aircraft, 2014, 52(1):49-63.
[78] SHI Y Y, GROSS R, MADER C A, et al. Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations[C]//2018 AIAA Aerospace Sciences Meeting. Reston:AIAA, 2018.
[79] CAMPBELL R L, LYNDE M N. Building a practical natural laminar flow design capability[C]//35th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2017.
[80] HARTSHORN F, BELISLE M, REED H. Computational optimization of a natural laminar flow experimental wing glove[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012.
[81] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese).
[82] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[83] MENTER F R, LANGTRY R, VÖLKER S. Transition modelling for general purpose CFD codes[J]. Flow, Turbulence and Combustion, 2006, 77(1):277-303.
[84] GRABE C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539.
[85] CHOI J H, KWON O J. Enhancement of a correlation-based transition turbulence model for simulating crossflow instability[J]. AIAA Journal, 2015, 53(10):3063-3072.
[86] GRABE C, NIE S Y, KRUMBEIN A. Transport modeling for the prediction of crossflow transition[J]. AIAA Journal, 2018, 56(8):3167-3178.
[87] WANG G, MIAN H H, YE Z Y, et al. Numerical study of transitional flow around NLR-7301 airfoil using correlation-based transition model[J]. Journal of Aircraft, 2014, 51(1):342-350.
[88] 徐家宽, 白俊强, 乔磊, 等. 后掠翼边界层横流不稳定转捩预测模型[J]. 航空动力学报, 2015, 30(4):927-935. XU J K, BAI J Q, QIAO L, et al. Prediction model of cross-flow instability transition in swept wing boundary layers[J]. Journal of Aerospace Power, 2015, 30(4):927-935(in Chinese).
[89] 鞠胜军, 阎超, 叶志飞. γ-Reθt-CF转捩模型在Spalart-Allmaras湍流模型中的推广及验证[J]. 航空学报, 2017, 38(4):120383. JU S J, YAN C, YE Z F. Genevalization and validation of γ-Reθt-CF transition modeling in combination with Spalart-Allmaras turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120383(in Chinese).
[90] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese).
[91] CODER J G, MAUGHMER M D. Computational fluid dynamics compatible transition modeling using an amplification factor transport equation[J]. AIAA Journal, 2014, 52(11):2506-2512.
[92] OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38(3):209-272.
[93] 徐家宽, 白俊强. 基于边界层相似性解的放大因子输运模型[J]. 航空学报, 2016, 37(4):1103-1113. XU J K, BAI J Q. Amplification factor transport model based on boundary layer similarity solution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1103-1113(in Chinese).
[94] 史亚云, 白俊强, 华俊, 等. 基于放大因子与Spalart-Allmaras湍流模型的转捩预测[J]. 航空动力学报, 2015, 30(7):1670-1677. SHI Y Y, BAI J Q, HUA J, et al. Transition prediction based on amplification factor and Spalart-Allmaras turbulence model[J]. Journal of Aerospace Power, 2015, 30(7):1670-1677(in Chinese).
[95] XU J K, QIAO L, BAI J Q. Improved local amplification factor transport equation for stationary crossflow instability in subsonic and transonic flows[J]. Chinese Journal of Aeronautics, 2020, 33(12):3073-3081.
[96] WALTERS D K, LEYLEK J H. A new model for boundary layer transition using a single-point RANS approach[J]. Journal of Turbomachinery, 2004, 126(1):193-202.
[97] WANG L, XIAO L H, FU S. A modular RANS approach for modeling hypersonic flow transition on a scramjet-forebody configuration[J]. Aerospace Science and Technology, 2016, 56:112-124.
[98] 徐晶磊, 周禹, 乔磊, 等. 基于湍动能输运的一方程转捩模型[J]. 推进技术, 2019, 40(4):741-749. XU J L, ZHOU Y, QIAO L, et al. One-equation transition model based on turbulent kinetic energy transport[J]. Journal of Propulsion Technology, 2019, 40(4):741-749(in Chinese).
[99] QIU Y S, BAI J Q, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics, 2018, 31(4):643-659.
[100] WILKE G. Variable-fidelity methodology for the aerodynamic optimization of helicopter rotors[J]. AIAA Journal, 2019, 57(8):3145-3158.
[101] LI J C, BOUHLEL M A, MARTINS J R R A. Data-based approach for fast airfoil analysis and optimization[J]. AIAA Journal, 2018, 57(2):581-596.
[102] BAILLY J, BAILLY D. Multifidelity aerodynamic optimization of a helicopter rotor blade[J]. AIAA Journal, 2019, 57(8):3132-3144.
[103] CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6):1342-1354.
[104] MITCHELL M. An introduction to genetic algorithms[M]. Boston:The MIT Press, 1998.
[105] HOLLAND J H. Adaptation in natural an artificial systems:An introductory analysis with applications to biology, control, and artificial intelligence[M]. Boston:The MIT Press, 1992.
[106] STORN R, PRICE K. Minimizing the real functions of the ICEC'96 contest by differential evolution[C]//Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway:IEEE Press, 1996:842-844.
[107] 杨体浩, 白俊强, 王丹, 等. 考虑发动机干扰的尾吊布局后体气动优化设计[J]. 航空学报, 2014, 35(7):1836-1844. YANG T H, BAI J Q, WANG D, et al. Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1836-1844(in Chinese).
[108] DORIGO M, MANIEZZO V, COLORNI A. Ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41.
[109] CLERC M. Particle swarm optimization[M]. Chippenham:Antony Rowe Ltd, 2010.
[110] LIAN Y S, OYAMA A, LIOU M S. Progress in design optimization using evolutionary algorithms for aerodynamic problems[J]. Progress in Aerospace Sciences, 2010, 46(5-6):199-223.
[111] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1-3):50-79.
[112] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese).
[113] 周铸, 黄江涛, 高正红, 等. 民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报, 2019, 40(1):522370. ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522370(in Chinese).
[114] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese).
[115] 陈永彬, 唐智礼, 盛建达. 跨音速自然层流翼型多目标优化设计[J]. 计算物理, 2016, 33(3):283-296. CHEN Y B, TANG Z L, SHENG J D. Multi-objective optimization for natural laminar flow airfoil in transonic flow[J]. Chinese Journal of Computational Physics, 2016, 33(3):283-296(in Chinese).
[116] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.
[117] TANG Z L, ZHANG M F, HU X. Optimal shape design and transition uncertainty analysis of transonic axisymmetric natural laminar flow nacelle at high Reynolds number[J]. Aerospace Science and Technology, 2022, 121:107345.
[118] FAN T L, SONG W P, CHEN J, et al. Hybrid optimization design of natural-laminar-flow(NLF) supercritical airfoil and infinite swept wing[C]//35th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2017.
[119] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese).
[120] SHI Y Y, BAI J Q, HUA J, et al. Numerical analysis and optimization of boundary layer suction on airfoils[J]. Chinese Journal of Aeronautics, 2015, 28(2):357-367.
[121] SUDHI A, ELHAM A, BADRYA C. Coupled boundary-layer suction and airfoil optimization for hybrid laminar flow control[J]. AIAA Journal, 2021, 59(12):5158-5173.
[122] SUDHI A, RADESPIEL R, BADRYA C. Design of transonic swept wing for HLFC application[C]//AIAA Aviation 2021 Forum. Reston:AIAA, 2021.
[123] STREIT T, WEDLER S, KRUSE M. DLR natural and hybrid transonic laminar wing design incorporating new methodologies[J]. The Aeronautical Journal, 2015, 119(1221):1303-1326.
[124] LI J C, ZHANG M Q, TAY C M J, et al. Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes[J]. Aerospace Science and Technology, 2022, 121:107309.
[125] WANG L Y, WANG C, WANG S Y, et al. A novel ANN-Based boundary strategy for modeling micro/nanopatterns on airfoil with improved aerodynamic performances[J]. Aerospace Science and Technology, 2022, 121:107347.
[126] 华俊, 张仲寅, 付大卫, 等. 一种跨音速翼型和机翼设计方法的新进展[J]. 航空学报, 1997, 18(5):519-522. HUA J, ZHANG Z Y, FU D W, et al. CFD software for transonic airfoil and wing design-An update[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(5):519-522(in Chinese).
[127] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese).
[128] YANG Y X, BAI J Q, LI L, et al. An inverse design method with aerodynamic design optimization for wing glove with hybrid laminar flow control[J]. Aerospace Science and Technology, 2019, 95:105493.
[129] CAMPBELL R, CAMPBELL M, STREIT T. Progress toward efficient laminar flow analysis and design[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011.
[130] SEITZ A, HVBNER A, RISSE K. The DLR TuLam project:Design of a short and medium range transport aircraft with forward swept NLF wing[J]. CEAS Aeronautical Journal, 2020, 11(2):449-459.
[131] LYNDE M N, CAMPBELL R L, HILLER B R. A design exploration of natural laminar flow applications for the SUSAN electrofan concept[C]//AIAA SCITECH 2022 Forum. Reston:AIAA, 2022.
[132] MARTINS J, KENWAY G, BURDETTE D A, et al. High-fidelity multidisciplinary design optimization of aircraft configurations:NASA-CR-219647[R]. Washington, D.C.:NASA, 2017.
[133] CHEN S, LYU Z J, KENWAY G K W, et al. Aerodynamic shape optimization of common research model wing-body-tail configuration[J]. Journal of Aircraft, 2015, 53(1):276-293.
[134] MADER C A, KENWAY G K, MARTINS J R R A, et al. Aerostructural optimization of the D8 wing with varying cruise Mach numbers[C]//18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2017.
[135] SECCO N R. Component-based aerodynamic shape optimization using overset meshes[D]. Ann Arbor:University of Michigan, 2018.
[136] PRALITS J O. Optimal design of natural and hybrid laminar flow control on wings[D]. Stockholm:Mekanik, 2003.
[137] AMOIGNON O, PRALITS J, HANIFI A, et al. Shape optimization for delay of laminar-turbulent transition[J]. AIAA Journal, 2006, 44(5):1009-1024.
[138] KHAYATZADEH P, NADARAJAH S. Aerodynamic shape optimization of natural laminar flow (NLF) airfoils[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012.
[139] ZHANG P F, LU J, WANG Z D, et al. Adjoint-based optimization method with linearized SST turbulence model and a frozen gamma-theta transition model approach for turbomachinery design[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York:ASME, 2015.
[140] LYU Z. High-fidelity aerodynamic design optimization of aircraft configurations[D]. Ann Arbor:University of Michigan, 2014.
[141] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[142] DRIVER J, ZINGG D W. Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction[J]. AIAA Journal, 2007, 45(8):1810-1818.
[143] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337.
[144] ZANG T A. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles:NASA-TM-107582[R]. Washington, D.C.:NASA, 2002.
[145] ZHAO H, GAO Z H, XU F, et al. Correction to:Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering, 2019, 26(5):1691.
[146] YAO W, CHEN X Q, LUO W C, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):450-479.
[147] RALLABHANDI S K, WEST T K, NIELSEN E J. Uncertainty analysis and robust design of low-boom concepts using atmospheric adjoints[J]. Journal of Aircraft, 2016, 54(3):902-917.
[148] SCHAEFER J A, CARY A W, MANI M, et al. Uncertainty quantification and sensitivity analysis of SA turbulence model coefficients in two and three dimensions[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017.
[149] CHASSAING J C, LUCOR D. Stochastic investigation of flows about airfoils at transonic speeds[J]. AIAA Journal, 2010, 48(5):938-950.
[150] ZHOU Y C, LU Z Z. Active polynomial chaos expansion for reliability-based design optimization[J]. AIAA Journal, 2019, 57(12):5431-5446.
[151] LIU S Y, WANG Y B, QIN N, et al. Quantification of airfoil aerodynamic uncertainty due to pressure-sensitive paint thickness[J]. AIAA Journal, 2019, 58(4):1432-1440.
[152] YANG T H, CHEN Y F, SHI Y Y, et al. Stochastic investigation on the robustness of laminar-flow wings for flight tests[J]. AIAA Journal, 2022, 60(4):2266-2286.
[153] BARKLAGE A, RÖMER U, BERTRAM A, et al. Analysis and uncertainty quantification of a hybrid laminar flow control system[J]. AIAA Journal, 2022:1-15.
[154] POHYA A A, WICKE K, KILIAN T. Introducing variance-based global sensitivity analysis for uncertainty enabled operational and economic aircraft technology assessment[J]. Aerospace Science and Technology, 2022, 122:107441.
[155] LYNDE M N, CAMPBELL R L, RIVERS M B, et al. Preliminary results from an experimental assessment of a natural laminar flow design method[C]//AIAA SCITECH 2019 Forum. Reston:AIAA, 2019.
[156] CROUCH J, SUTANTO M, WITKOWSKI D, et al. Assessment of the national transonic facility for natural laminar flow testing[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010.
[157] PECNIK R, WITTEVEEN J, IACCARINO G. Uncertainty quantification for laminar-turbulent transition prediction in RANS turbomachinery applications[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[158] ZHAO H, GAO Z H, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68:530-542.
[159] ZHAO H, GAO Z H, WANG C, et al. Robust design of high speed natural-laminar-flow airfoil for high lift[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017.
[160] QUAGLIARELLA D, IULIANO E. Uncertainty sources in the baseline configuration for robust design of a supersonic natural laminar flow wing-body[M]//Computational methods in applied sciences. Cham:Springer International Publishing, 2018:371-390.
[161] QUAGLIARELLA D, IULIANO E. Robust design of a supersonic natural laminar flow wing-body[C]//IEEE Computational Intelligence Magazine. Piscataway:IEEE Press, 2017:14-27.
[162] XIONG N, TAO Y, LIU Z Y, et al. Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle[J]. Modern Physics Letters B, 2018, 32(12&13):1840048.
[163] HOLLOM J, QIN N. Quantification and multi-point optimization of natural laminar flow airfoil robustness to transition amplification factor[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2018.
[164] HOLLOM M J. Optimisation of natural laminar flow aerofoils and wings for robustness to critical transition amplification factor[D]. Sheffield:University of Sheffield, 2019.
[165] SABATER C, BEKEMEYER P, GÖRTZ S. Robust design of transonic natural laminar flow wings under environmental and operational uncertainties[C]//AIAA SCITECH 2021 Forum. Reston:AIAA, 2021.
文章导航

/