综述

空中交通工程学理论内涵与关键科学技术

  • 赵嶷飞 ,
  • 王梦琦
展开
  • 中国民航大学 空中交通管理学院, 天津 300300

收稿日期: 2021-10-19

  修回日期: 2021-11-08

  网络出版日期: 2022-05-09

基金资助

国家重点研发计划(2016YFB0502400)

Important theories and critical scientific technology of air traffic engineering

  • ZHAO Yifei ,
  • WANG Mengqi
Expand
  • College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China

Received date: 2021-10-19

  Revised date: 2021-11-08

  Online published: 2022-05-09

Supported by

National Key Research and Development Program of China (2016YFB0502400)

摘要

航空器自1903年诞生至今已逾百年,航空器飞行速度、飞行距离、飞行高度都有了巨大提升。与1924年世界上第一条长距离航路上使用的灯光导航、高频通信设备相比,今天的卫星导航、数据链通信同样发生了翻天覆地的变化。这些巨大进步已经构成一部精彩的航空科学技术发展史。本文尝试转换观察视角,从交通运输角度,审视空中交通管理实践发展历程和学科知识、研究方法积累过程。在此基础上,以构建学科体系为目标,探讨空中交通工程学研究对象、核心概念和基本原理,总结代表性科学问题和关键技术架构,为进一步构建空中交通工程学科体系,指导后续研究提供理论和研究方法上的支持。

本文引用格式

赵嶷飞 , 王梦琦 . 空中交通工程学理论内涵与关键科学技术[J]. 航空学报, 2022 , 43(12) : 26537 -026537 . DOI: 10.7527/S1000-6893.2022.26537

Abstract

It has been more than 100 years since the birth of aircraft in 1903, and aircraft speed, range and endurance, and operation altitude have been greatly improved. Compared with the visual navigation and high-frequency communication equipment used on the world's first long-distance air mail route in 1924, today's satellite navigation and data link communication have also undergone earth-shaking changes. These great advances have constituted a wonderful history of the development of aviation science and technology. This paper examines the development process of air traffic management practice and the accumulation of related knowledge and research methods in terms of aviation operation management. On this basis, with the goal of constructing the discipline system, this paper discusses the research objects, key concepts and basic principles of air traffic engineering and summarizes the representative scientific problems and key technology frameworks, providing theoretical and methodological support for further construction of the discipline system and follow-up research on air traffic engineering.

参考文献

[1] 中华人民共和国国务院. 国家中长期科学和技术发展规划纲要(2006-2020年)[J].中国安防,2006(1):27. State council of the People's Republic of China. Outline of the national medium and long term plan for science and technology development (2006-2020)[J].China Security and Protection,2006(1):27(in Chinese).
[2] International Civil Aviation Organization. Aeronautical information services:Annex 15[S].Montréal:International Civil Aviation Organization (ICAO), 2016.
[3] International Civil Aviation Organization. Procedures for air navigation services air traffic management:Doc 4444[S].Montréal:International Civil Aviation Organization (ICAO), 2016.
[4] Colb@xtra.co.nz. Croydon Airport 1915 to 1959[EB/OL]. (2018-03-15)[2021-10-19]. http://www.airportofcroydon.com/Airport%20History.html.
[5] 金绮. 美国民航从送信到运客的嬗变[J]. 大飞机, 2017(7):74-76. JIN Q. The evolution of American civil aviation from delivering letters to transporting passengers[J]. Jetliner, 2017(7):74-76(in Chinese).
[6] International Civil Aviation Organization. Rules of the air and air traffic control:Doc 5500[S].Montréal:International Civil Aviation Organization (ICAO), 1948.
[7] NOLAN M S. Fundamentals of air traffic control[M]. 4th ed. Belmont, CA:Thomson——Brooks/Cole, 2004
[8] PHILIPP W, GAINCHE F. Air traffic flow management in Europe[M]. Advanced Technologies for Air Traffic Flow Management. London:Springer-Verlag, 2005:64-106.
[9] Office of Inspector General, U.S. Department of Transportation. Audit report:Advance automation system, federal aviation administration[R].Washington, D.C.:DOT OIG, 1998.
[10] SCHULTZ R, SHANER D, ZHAO Y Y, et al. Free flight concept:AIAA-1997-3677[R]. Reston:AIAA,1997.
[11] LACHER A, WALKER G. Collaborative strategic planning in a "free flight" ATM system:AIAA-1995-3895[R]. Reston:AIAA, 1995.
[12] RODRÍGUEZ-SANZ Á, CLARAMUNT PUCHOL C, GÓMEZ COMENDADOR F, et al. Air traffic management based on 4D-trajectories:Requirements and practical implementation[J]. MATEC Web of Conferences, 2019, 304:05001.
[13] SESAR, Trajectory-based operations[EB/OL]. (2019-02-20)[2021-10-19]. https://www.sesarju.eu/sesar-solutions/trajectory-based-operations.
[14] ADAMS C. Maastricht:Initial 4D[C]//2014 Integrated Communications, Navigation and Surveillance Conference (ICNS) Conference Proceedings. Piscataway:IEEE Press,2014:1-11.
[15] GILBERT G A. Air traffic control[M]. London:Ziff-Davis Publishing Cmopany, 1945:1-274.
[16] BOWEN E G. Operational research into the air traffic problem[J]. Journal of Navigation, 1948, 1(4):338-341.
[17] Civil Aeronautics Administration. Operation of the air traffic control system[R]. Washington, D.C.:CAA,1953.
[18] BLUMSTEIN A, The landing capacity of a runway[J]. Operations Research, 1959, 7(6):752-763.
[19] ZANIESKI J P. Airport capacity analysis a systems approach[M]. Austin:The University Of Texas, 1974.
[20] ARAD B A, GOLDEN B T, GRAMBART J E, et al. Control load, control capacity and optimal sector design:RD-64[R]. Atlantic City:National Aviation Facilities Experimental Center, 1963.
[21] International Civil Aviation Organization. Air traffic services planning manual:Doc 9426[S].Montréal:International Civil Aviation Organization (ICAO), 1984.
[22] 万莉莉, 胡明华. 管制员工作负荷及扇区容量评估问题研究[J]. 交通运输工程与信息学报, 2006, 4(2):70-75. WAN L L, HU M H. Research on the evaluation of controller's workload and the sector capacity[J]. Journal of Transportation Engineering and Information, 2006, 4(2):70-75(in Chinese).
[23] MANNINO C, NAKKERUD A, SARTOR G. Air traffic flow management with layered workload constraints[J]. Computers & Operations Research, 2021, 127:105159.
[24] MAJUMDAR A, OCHIENG W, MCAULEY G, et al. The factors affecting airspace capacity in Europe:a cross-sectional time-series analysis using simulated controller workload data[J]. Journal of Navigation, 2004, 57(03):385-405.
[25] TERRAB M, ODONI A, DEUTSCH O. Ground-holding strategies for ATC flow control[C]//Guidance, Navigation and Control Conference. Reston:AIAA, 1989.
[26] KISTAN T, GARDI A, SABATINI R, et al. An evolutionary outlook of air traffic flow management techniques[J]. Progress in Aerospace Sciences, 2017, 88:15-42.
[27] BROOKER P. Air traffic control separation minima:Part 1-the current stasis[J]. Journal of Navigation, 2011, 64(3):449-465.
[28] REICH P G. Analysis of long-range air traffic systems:Separation standards-I[J]. Journal of Navigation, 1966, 19(1):88-98.
[29] LI D B, XU X H, LI X. Target level of safety for Chinese airspace[J]. Safety Science, 2009, 47(3):421-424.
[30] MACHOL R E. Thirty years of modeling midair collisions[J]. Interfaces, 1995, 25(5):151-172.
[31] 徐肖豪, 李冬宾, 李雄. 飞行间隔安全评估研究[J]. 航空学报, 2008, 29(6):1411-1418. XU X H, LI D B, LI X. Research on safety assessment of flight separation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1411-1418(in Chinese).
[32] 薛文安, 周其焕. 通信导航监视/空中交通管理(CNS/ATM)系统概要[J]. 电子科技导报, 1996(6):2-7, 38. XUE W A, ZHOU Q H. Overview of CNS/ATM system[J]. Electronic Science & Technology Review, 1996(6):2-7, 38. (in Chinese)
[33] BURGEMEISTER A H, LINDSEY C G, MAKINS N J, et al. Air traffic management concept baseline definition:RR-97-3[R]. Seattle:Boeing Commercial Aircraft Group, 1997.
[34] SIPE A L, SCHWAB R W, HARALDSDOTTIR A, et al. Capacity-enhancing air traffic management concept[J]. Journal of Aircraft, 2005, 42(1):105-112.
[35] International Civil Aviation Organization. Global air traffic management operational concept:Doc 9854[S]. Canada:ICAO,2005.
[36] ODONI A. Reflections on the first year of NEXTOR[R].Washington, DC, USA:FAA, 1997.
[37] HANSMAN R J, IDRIS H R. Observation and analysis of departure operations at Boston Logan International Airport[D]. Cambridge:Massachusetts Institute of Technology, 2001:1-137.
[38] REYNOLDS H J D. Identification of communication and coordination issues in the US air traffic control system[D]. Cambridge:Massachusetts Institute of Technology, 2001:1-144.
[39] GILBO E P. Airport capacity:Representation, estimation, optimization[J]. IEEE Transactions on Control Systems Technology, 1993, 1(3):144-154.
[40] IVERSON D L. Inductive system health monitoring[C]//The 2004 International Conference on Artificial Intelligence. Las Vegas:CSREA Press, 2004.
[41] STATLER I. The aviation system monitoring and modeling (ASMM) project:A documentation of its history and accomplishments:1999-2005:NASA/TP-2007-214556[R]. Washington, D.C.:NASA, 2007.
[42] SCHÄFER M, STROHMEIER M, LENDERS V, et al. Bringing up OpenSky:A large-scale ADS-B sensor network for research[C]//IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. Piscataway:IEEE Press, 2014.
[43] PATRIARCA R, DI GRAVIO G, CIOPONEA R, et al. Democratizing business intelligence and machine learning for air traffic management safety[J]. Safety Science, 2022, 146:105530.
[44] LI L S, GARIEL M, HANSMAN R J, et al. Anomaly detection in onboard-recorded flight data using cluster analysis[J]. 2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2011.
[45] NANDURI A, SHERRY L. Anomaly detection in aircraft data using recurrent neural networks (RNN)[C]//2016 Integrated Communications Navigation and Surveillance (ICNS). Piscataway:IEEE Press, 2016.
[46] BASORA L, OLIVE X, DUBOT T. Recent advances in anomaly detection methods applied to aviation[J]. Aerospace, 2019, 6(11):117.
[47] GARIEL M, SRIVASTAVA A N, FERON E. Trajectory clustering and an application to airspace monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4):1511-1524.
[48] OLIVE X, BIEBER P. Quantitative assessments of runway excursion precursors using Mode S data[DB/OL]. arXiv:1903.11964,2019.
[49] OLIVE X, BASORA L. Identifying anomalies in past en-route trajectories with clustering and anomaly detection methods:hal-02345597[R]. Washington,D.C.:FAA,2019
[50] MURCA M C R, DELAURA R, HANSMAN R J, et al. Trajectory clustering and classification for characterization of air traffic flows:AIAA-2016-3760[R]. Reston:AIAA, 2016.
[51] MURÇA M C R, HANSMAN R J, LI L S, et al. Flight trajectory data analytics for characterization of air traffic flows:A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo[J]. Transportation Research Part C:Emerging Technologies, 2018, 97:324-347.
[52] 田文, 胡明华. 空域扇区概率交通需求预测模型[J]. 西南交通大学学报, 2011, 46(2):340-346. TIAN W, HU M H. Airspace sector probabilistic traffic demand prediction model[J]. Journal of Southwest Jiaotong University, 2011, 46(2):340-346(in Chinese).
[53] ERZBERGER H, CHAPEL J D. Concepts and algorithms for terminal-area traffic management[J]. 1984 American Control Conference. Piscataway:IEEE Press, 1984.
[54] LIU W Y, HWANG I. Probabilistic trajectory prediction and conflict detection for air traffic control[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6):1779-1789.
[55] JUNG S, KOCHENDERFER M J. Learning terminal airspace traffic models from flight tracks and procedures[J]. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2019.
[56] BASORA L, COURCHELLE V, BEDOUET J. Occupancy peak estimation from sector geometry and traffic flow data[C]//8th SESAR Innovation Days. Amsterdam:SESAR, 2018.
[57] MEIJERS N P. Data-driven predictive analytics of runway occupancy time for improved capacity at airports[D]. Cambridge:Massachusetts Institute of Technology, 2019:1-128.
[58] TASCÓN D C, DÍAZ OLARIAGA O. Air traffic forecast and its impact on runway capacity. A System Dynamics approach[J]. Journal of Air Transport Management, 2021, 90:101946.
[59] LIU Y L, LIU Y, HANSEN M, et al. Using machine learning to analyze air traffic management actions:Ground delay program case study[J]. Transportation Research Part E:Logistics and Transportation Review, 2019, 131:80-95.
[60] 王炜, 过秀成. 交通工程学[M]. 南京:东南大学出版社, 2000. WANG W, GUO X C. Traffic engineering[M]. Nanjing:Southeast University Press, 2000(in Chinese).
[61] VIETS K J, TABER N J. An overview of a flight object concept for the national airspace system (NAS):MTR 00 W0000085[R]. McLean:The MITRE Corporation,2000.
[62] International Civil Aviation Organization. FIXM US Extension v4.3.0[EB/OL]. (2021-11-30)[2022-03-14]. https://www.fixm.aero/release.pl?rel=US_Ext-4.3.0.
[63] International Civil Aviation Organization. Air traffic services:Annex 11[S].Montréal:International Civil Aviation Organization (ICAO), 2018.
[64] 中国民用航空局. 民用航空空中交通管理规则:CCAR-93[S]. 北京:中国民用航空局,2017. Civil Aviation Administration of China. Air traffic management rules of civil aviation:CCAR-93[S] Beijing:Civil Aviation Administration of China, 2017(in Chinese).
[65] Federal Aviation Agency. Glossary of air traffic control terms:TL725.3.T7U634[S].Washiton,USA:FAA,1962.
[66] Clark J P. The 3 M's of ATM[EB/OL]. (2015-06-26)[2022-03-14]. http://www.atmseminar.org.
[67] 盛昭瀚, 薛小龙, 安实. 构建中国特色重大工程管理理论体系与话语体系[J]. 管理世界, 2019, 35(4):2-16, 51, 195. SHENG Z H, XUE X L, AN S. Constructing theoretical system and discourse system of mega infrastructure construction management with Chinese characteristics[J]. Management World, 2019, 35(4):2-16, 51, 195(in Chinese).
[68] Federal Aviation Administration. Safety risk management Policy:FAA Order 8040.4B[S]. Washington:FAA,2017.
[69] 中国民用航空局. 民用航空器征候等级划分办法:AC-395-AS-013[S]. 北京:中国民用航空局, 2021(in Chinese). Civil Aviation Administration of China. Air traffic measures for classification of incident levels of civil aircraft[S] Beijing:Civil Aviation Administration of China,2021.
[70] BROOKER P. Air traffic management safety challenges[C]//2nd Institution of Engineering and Technology System Safety Conference. London:IET, 2007.
[71] International Civil Aviation Organization. Manual on global performance of the air navigation system:Doc 9883[S].Montréal:International Civil Aviation Organization (ICAO),2009.
[72] 袁乐平, 刘露, 孙瑞山. 双岗制下不同席位管制员工作负荷差异性研究[J]. 中国民航大学学报, 2013, 31(1):32-35. YUAN L P, LIU L, SUN R S. Study on variation of controller workload between different positions[J]. Journal of Civil Aviation University of China, 2013, 31(1):32-35(in Chinese).
[73] 京昆空中大通道投入运行[J]. 交通建设与管理, 2013(12):19. Beijing-Kunming air passage put into operation[J]. Transportation Construction & Management, 2013(12):19(in Chinese).
[74] International Civil Aviation Organization. Safety management manual(SMM):Doc 9859[S].Montréal:International Civil Aviation Organization (ICAO), 2018.
[75] International Civil Aviation Organization. Manuel on ATM system requirements:Doc 9882[S].Montréal:International Civil Aviation Organization (ICAO), 2008.
[76] International Civil Aviation Organization. Manual on flight and flow-information for a collaborative environment (FF-ICE):Doc 9965[S].Montréal:International Civil Aviation Organization (ICAO), 2012.
[77] International Civil Aviation Organization. Manual on collaborative air traffic flow management:Doc 9971[S].Montréal:International Civil Aviation Organization (ICAO), 2015.
[78] 盛昭瀚. 重大工程管理基础理论源于中国重大工程管理实践的理论思考[M]. 南京:南京大学出版社, 2020. SHENG Z H. Fundamental theories of mega infrastrucure[i.e. infrastructure] construction management[M]. Nanjing:Nanjing University Press, 2020(in Chinese).
[79] 卢守峰, 杨兆升, 刘喜敏. 基于复杂性理论的城市交通系统研究[J]. 吉林大学学报(工学版), 2006, 36(S1):153-156. LU S F, YANG Z S, LIU X M. Research on urban traffic system based on complexity theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(S1):153-156(in Chinese).
[80] SCHMIDT D K. On modeling ATC work load and sector capacity[J]. Journal of Aircraft, 1976, 13(7):531-537.
[81] MOGFORD R H, GUTTMAN J A, MORROW S L, et al. The complexity construct in air traffic control:A review and synthesis of the literature:DOT/FAA/CT-TN95/22[R]. Washington, D.C.:FAA, 1995.
[82] PAWLAK W, BRINTON C, CROUCH K, et al. A framework for the evaluation of air traffic control complexity:AIAA-1996-3856[R]. Reston:AIAA, 1996.
[83] LAUDEMAN L V, SHELDEN S G, BRANSTROM R, et al. Dynamic density:an air traffic management metric:NASA/TM-1998-112226[R]. Washington, D.C.:NASA,1998.
[84] CAO X B, ZHU X, TIAN Z C, et al. A knowledge-transfer-based learning framework for airspace operation complexity evaluation[J]. Transportation Research Part C:Emerging Technologies, 2018, 95:61-81.
[85] HISTON J M, HANSMAN R J, AIGOIN G, et al. Introducing structural considerations into complexity metrics[J]. Air Traffic Control Quarterly, 2002, 10(2):115-130.
[86] HELFRICK A. The centennial of avionics:Our 100-year trek to performance-based navigation[J]. IEEE Aerospace and Electronic Systems Magazine, 2015, 30(9):36-45.
[87] 朱永文, 谢华, 王长春. 空域数值计算与优化方法[M]. 北京:科学出版社, 2020. ZHU Y W, XIE H, WANG C C. Numerical calculation and optimization of airspace[M]. Beijing:Science Press, 2020(in Chinese).
[88] 朱永文, 陈志杰, 蒲钒, 等. 数字化空域系统发展研究[J]. 中国工程科学, 2021, 23(3):135-143. ZHU Y W, CHEN Z J, PU F, et al. Development of digital airspace system[J]. Strategic Study of CAE, 2021, 23(3):135-143(in Chinese).
[89] DELAHAYE D, PUECHMOREL S. Air traffic complexity:Towards an intrinsic metric[R]. Washington, D.C.:FAA, 2000.
[90] LEE K, FERON E, PRITCHETT A. Describing airspace complexity:Airspace response to disturbances[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1):210-222.
[91] 张进, 胡明华, 张晨. 空中交通管理中的复杂性研究[J]. 航空学报, 2009, 30(11):2132-2142. ZHANG J, HU M H, ZHANG C. Complexity research in air traffic management[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2132-2142(in Chinese).
[92] 赵嶷飞, 周阳. 五边到场交通态势安全评估研究[J]. 中国安全科学学报, 2011, 21(6):99-103. ZHAO Y F, ZHOU Y. Safety evaluation on five-edge arrival traffic complexity[J]. China Safety Science Journal, 2011, 21(6):99-103(in Chinese).
[93] 赵嶷飞, 杨剑, 王红勇. 基于复杂性图的到场航班调配方法研究[J]. 中国民航大学学报, 2013, 31(2):17-21, 28. ZHAO Y F, YANG J, WANG H Y. Method on maneuvering arrival flights based on complexity-map[J]. Journal of Civil Aviation University of China, 2013, 31(2):17-21, 28(in Chinese).
[94] 王红勇, 郭宇鹏. 基于航空器自主运行的空中交通复杂性建模[J/OL]. 交通运输系统工程与信息, (2022-02-11)[2022-03-14]. https://kns.cnki.net/kcms/detail/11.4520.U.20220211.1344.013.html. WANG H Y, GUO Y P. An air traffic complexity model based on aircraft self-separation operation[J/OL]. Journal of Transportation Systems Engineering and Information Technology, (2022-02-11)[2022-03-14]. https://kns.cnki.net/kcms/detail/11.4520.U.20220211.1344.013.html (in Chinese).
[95] 王红勇, 赵嶷飞, 温瑞英. 基于复杂网络的空中交通复杂性度量方法[J]. 系统工程, 2014, 32(3):112-118. WANG H Y, ZHAO Y F, WEN R Y. Air traffic complexity metrics based on complex networks[J]. Systems Engineering, 2014, 32(3):112-118(in Chinese).
[96] WANG H, WEN R, ZHAO Y. Empirical research on topological characteristics of air traffic situation network[J]. Applied Mechanics and Materials, 2015, 744-746:1975-1979.
[97] WANG H Y, SONG Z Q, WEN R Y. Modeling air traffic situation complexity with a dynamic weighted network approach[J]. Journal of Advanced Transportation, 2018, 2018:1-15.
[98] RADANOVIC M, PIERA EROLES M A, KOCA T, et al. Surrounding traffic complexity analysis for efficient and stable conflict resolution[J]. Transportation Research Part C:Emerging Technologies, 2018, 95:105-124.
[99] KOCA T, PIERA M A, RADANOVIC M. A methodology to perform air traffic complexity analysis based on spatio-temporal regions constructed around aircraft conflicts[J]. IEEE Access, 7:104528-104541.
[100] WANKE C, CALLAHAM M, GREENBAUM D, et al. Measuring uncertainty in airspace demand predictions for traffic flow management applications:AIAA-2003-5708[R]. Reston:AIAA, 2003.
[101] SIMAIAKIS I, BALAKRISHNAN H. A queuing model of the airport departure process[J]. Transportation Science, 2016, 50(1):94-109.
[102] 王超, 郑旭芳, 王蕾. 交汇航路空中交通流的非线性特征研究[J]. 西南交通大学学报, 2017, 52(1):171-178. WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1):171-178(in Chinese).
[103] ZHANG X, LIU H Z, ZHAO Y F, et al. Multifractal detrended fluctuation analysis on air traffic flow time series:a single airport case[J]. Physica A:Statistical Mechanics and Its Applications, 2019, 531:121790.
[104] 罗霞, 杜进有, 霍娅敏. 车头间距分布规律的研究[J]. 西南交通大学学报, 2001, 36(2):113-116. LUO X, DU J Y, HUO Y M. Study on the distribution patterns of time headway of vehicles[J]. Journal of Southwest Jiaotong University, 2001, 36(2):113-116(in Chinese).
[105] 向郑涛, 陈宇峰, 李昱瑾, 等. 基于多尺度熵的交通流复杂性分析[J]. 物理学报, 2014, 63(3):038903. XIANG Z T, CHEN Y F, LI Y J, et al. Complexity analysis of traffic flow based on multi-scale entropy[J]. Acta Physica Sinica, 2014, 63(3):038903(in Chinese).
[106] 王超, 朱明. 空中交通流微观尾随时距分布模型[J]. 计算机仿真, 2018, 35(5):55-59, 105. WANG C, ZHU M. Microscopic aircraft-following headway distribution model of air traffic flow[J]. Computer Simulation, 2018, 35(5):55-59, 105(in Chinese).
[107] WANG C, LI S M, ZHU M. Empirical exploration of air traffic control behaviour at terminal maneuvering area:From an air traffic flow aspect[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(2):187-196.
[108] 《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6):1-161. Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress:2016[J]. China Journal of Highway and Transport, 2016, 29(6):1-161(in Chinese).
[109] 张洪海, 胡勇, 杨磊, 等. 多机场终端区微观交通流建模与仿真分析[J]. 西南交通大学学报, 2015, 50(2):368-374. ZHANG H H, HU Y, YANG L, et al. Modeling and simulation analysis of microscopic traffic flow in multi-airport terminal airspace[J]. Journal of Southwest Jiaotong University, 2015, 50(2):368-374(in Chinese).
[110] 张洪海, 杨磊, 别翌荟, 等. 终端区进场交通流广义跟驰行为与复杂相变分析[J]. 航空学报, 2015, 36(3):949-961. ZHANG H H, YANG L, BIE Y H, et al. Analysis on generalized following behavior and complex phasetransition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):949-961(in Chinese).
[111] YANG L, YIN S W, HU M H, et al. Empirical exploration of air traffic and human dynamics in terminal airspaces[J]. Transportation Research Part C:Emerging Technologies, 2017, 84:219-244.
[112] YANG L, YIN S W, HAN K, et al. Fundamental diagrams of airport surface traffic:Models and applications[J]. Transportation Research Part B:Methodological, 2017, 106:29-51.
[113] MA C Y, CAI Q, ALAM S, et al. Airspace capacity overload identification using collision risk patterns[C]//2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT). Piscataway:IEEE Press, 2020.
[114] 高自友, 赵小梅, 黄海军, 等. 复杂网络理论与城市交通系统复杂性问题的相关研究[J]. 交通运输系统工程与信息, 2006, 6(3):41-47. GAO Z Y, ZHAO X M, HUANG H J, et al. Research on problems related to complex networks and urban traffic systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(3):41-47(in Chinese).
[115] COOK A, TANNER G, CRISTÓBAL S, et al. New perspectives for air transport performance[R]. Amsterdam:SESAR, 2013.
[116] PIEN K C, HAN K, SHANG W L, et al. Robustness analysis of the European air traffic network[J]. Transportmetrica A Transport Science, 2015, 11(9):772-792.
[117] GARCÍA-OVIES CARRO I, ARNALDO VALDÉS R M, CORDERO GARCÍA J M, et al. The influence of the air traffic network structure on the occurrence of safety events:A data-driven approach[J]. Safety Science, 2019, 113:161-170.
[118] JANIC' M. Reprint of "Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event"[J]. Transportation Research Part A:Policy and Practice, 2015, 81:77-92.
[119] GRABBE S R, SRIDHAR B, MUKHERJEE A. Similar days in the NAS:An airport perspective:AIAA-2013-4222[R]. Reston:AIAA, 2013.
[120] BRAIN C, VINCENT S. Capacity assessment and planning guidance document[S]. Brussels:EUROCONTROL, 2013.
[121] KOTEGAWA T, FRY D, DELAURENTIS D, et al. Impact of service network topology on air transportation efficiency[J]. Transportation Research Part C:Emerging Technologies, 2014, 40:231-250.
[122] ZHOU Y M, WANG J W, HUANG G Q. Efficiency and robustness of weighted air transport networks[J]. Transportation Research Part E:Logistics and Transportation Review, 2019, 122:14-26.
[123] JETZKI M. The propagation of air transport delays in Europe[J]. Belgium:EUROCONTROL, 2009.
[124] XU N, LASKEY K B, CHEN C H, et al. Bayesian network analysis of flight delays[R]. Washington, D.C.:SGS, 2007.
[125] PYRGIOTIS N, MALONE K M, ODONI A. Modelling delay propagation within an airport network[J]. Transportation Research Part C:Emerging Technologies, 2013, 27:60-75.
[126] REBOLLO J J, BALAKRISHNAN H. Characterization and prediction of air traffic delays[J]. Transportation Research Part C:Emerging Technologies, 2014, 44:231-241.
[127] CAI Q, ALAM S, DUONG V. A spatial-temporal network perspective for the propagation dynamics of air traffic delays[J]. Engineering, 2021, 7(1):452-464.
[128] CARVALHO L, STERNBERG A, MAIA GONÇALVES L, et al. On the relevance of data science for flight delay research:A systematic review[J]. Transport Reviews, 2021, 41(4):499-528.
[129] ANAGNOSTAKIS I, CLARKE J P, BOHME D, et al. Runway operations planning and control:Sequencing and scheduling[J]. Journal of Aircraft, 2001, 38(6):988-996.
[130] BRINTON C, LENT S, PROVAN C. Field test results of collaborative departure queue management[C]//29th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2011.
[131] OKUNIEK J N, GERDES I, JAKOBI J, et al. A concept of operations for trajectory-based taxi operations:AIAA-2016-3753[R]. Reston:AIAA, 2016.
[132] GREEN S, BILIMORIA K, BALLIN M. Distributed air-ground traffic management for en route flight operations:AIAA-2000-4064[R]. Reston:AIAA, 2000.
[133] CORRIGAN S, MÅRTENSSON L, KAY A, et al. Preparing for airport collaborative decision making (A-CDM) implementation:An evaluation and recommendations[J]. Cognition, Technology & Work, 2015, 17(2):207-218.
[134] REUSSER A, KERN C, MICHALKE R, et al. Arrival flow control by local cherry picking[R]. Washington, D.C.:FAA, 2011.
[135] SUGOON F. From BOBCAT to Cross-Border ATFM[EB/OL]. (2015-10-22)[2022-03-14]. https://www.icao.int/APAC/Meetings/Pages/2015-AFTM-WS-IND.aspx.
[136] XU Y, DALMAU R, MELGOSA M, et al. A framework for collaborative air traffic flow management minimizing costs for airspace users:Enabling trajectory options and flexible pre-tactical delay management[J]. Transportation Research Part B:Methodological, 2020, 134:229-255.
[137] 王兴隆, 齐雁楠, 潘维煌. 基于功能脆弱性的空中交通相依网络流量分配[J]. 航空学报, 2020, 41(4):323479. WANG X L, QI Y N, PAN W H. Flow allocation of air traffic interdependent network based on functional vulnerability[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):323479(in Chinese).
[138] 石艳丽. 面向首都机场的航班改降策略研究[D]. 天津:中国民航大学, 2014. SHI Y L. Research on flight alternate strategy of Beijing capital airport[D]. Tianjin:Civil Aviation University of China, 2014(in Chinese).
[139] BROOKER P. Air traffic management accident risk. Part 1:The limits of realistic modelling[J]. Safety Science, 2006, 44(5):419-450.
[140] BROOKER P. Future air traffic management:Quantitative en route safety assessment part 2-new approaches[J]. Journal of Navigation, 2002, 55(3):363-379.
[141] LAROUZEE J, LE COZE J C. Good and bad reasons:The Swiss cheese model and its critics[J]. Safety Science, 2020, 126:104660.
[142] FELICI M. Capturing emerging complex interactions:Safety analysis in air traffic management[J]. Reliability Engineering & System Safety, 2006, 91(12):1482-1493.
[143] Federal Aviation Administration. A concept paper for separation safety modeling[R]. Washington, D.C.:FAA, 1998.
[144] NETJASOV F, JANIC M. A review of research on risk and safety modelling in civil aviation[J]. Journal of Air Transport Management, 2008, 14(4):213-220.
[145] BROOKER P. STCA, TCAS, airproxes and collision risk[J]. Journal of Navigation, 2005, 58(3):389-404.
[146] ANDREWS J W, WELCH J D, ERZBERGER H. Safety analysis for advanced separation concepts[J]. Air Traffic Control Quarterly, 2006, 14(1):5-24.
[147] NETJASOV F, VIDOSAVLJEVIC A, TOSIC V, et al. Development, validation and application of stochastically and dynamically coloured Petri net model of ACAS operations for safety assessment purposes[J]. Transportation Research Part C:Emerging Technologies, 2013, 33:167-195.
[148] Federal Aviation Administration. Air traffic control:FAA Order JO 7110.65Z[S]. Washington, D.C.:FAA, 2021.
[149] International Civil Aviation Oraganization. Manual on airspace planning methodology for the determination of separation minima:Doc 9689[S].Montréal:International Civil Aviation Organization (ICAO), 1998.
[150] NETJASOV F. Framework for airspace planning and design based on conflict risk assessment[J]. Transportation Research Part C:Emerging Technologies, 2012, 24:190-212.
[151] YOUSEFI A, DONOHUE G. Temporal and spatial distribution of airspace complexity for air traffic controller workload-based sectorization:AIAA-2004-6455[R]. Reston:AIAA, 2004.
[152] XUE M. Airspace sector redesign based on voronoi diagrams[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(12):624-634.
[153] KOPARDEKAR P, BILIMORIA K, SRIDHAR B. Initial concepts for dynamic airspace configuration:AIAA-2007-7763[R]. Reston:AIAA, 2007.
[154] NAVA-GAXIOLA C A, BARRADO C. Free route airspace and the need of new air traffic control tools[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2016.
[155] KALE U, JANKOVICS I, NAGY A, et al. Towards sustainability in air traffic management[J]. Sustainability, 2021, 13(10):5451.
[156] IDRIS H, DELCAIRE B, ANAGNOSTAKIS I, et al. Identification of flow constraint and control points in departure operations at airport systems:AIAA-1998-4291[R]. Reston:AIAA, 1998.
[157] LI L H, CLARKE J P, CHIEN H H C, et al. A probabilistic decision-making model for runway configuration planning under stochastic wind conditions[J]. 2009 IEEE/AIAA 28th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2009.
[158] BERTSIMAS D, FRANKOVICH M, ODONI A. Optimal selection of airport runway configurations[J]. Operations Research, 2011, 59(6):1407-1419.
[159] BALAKRISHNAN H, JUNG Y. A framework for coordinated surface operations planning at Dallas-fort worth international airport:AIAA-2007-6553[R]. Reston:AIAA, 2007.
[160] GUÉPET J, BRIANT O, GAYON J P, et al. The aircraft ground routing problem:analysis of industry punctuality indicators in a sustainable perspective[J]. European Journal of Operational Research, 2016, 248(3):827-839.
[161] SIMAIAKIS I, KHADILKAR H, BALAKRISHNAN H, et al. Demonstration of reduced airport congestion through pushback rate control[J]. Transportation Research Part A:Policy and Practice, 2014, 66:251-267.
[162] MENON P K, SWERIDUK G D, BILIMORIA K D. New approach for modeling, analysis, and control of air traffic flow[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):737-744.
[163] BAYEN A M, RAFFARD R L, TOMLIN C J. Eulerian network model of air traffic flow in congested areas[C]//Proceedings of the 2004 American Control Conference. Piscataway:IEEE Press, 2004.
[164] SRIDHAR B, SONI T, SHETH K, et al. Aggregate flow model for air-traffic management[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):992-997.
[165] SUN D F, BAYEN A M. Multicommodity eulerian-Lagrangian large-capacity cell transmission model for en route traffic[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):616-628.
[166] KROZEL J, JAKOBOVITS R, PENNY S. An algorithmic approach for airspace flow programs[J]. Air Traffic Control Quarterly, 2006, 14(3):203-229.
[167] LULLI G, ODONI A. The European air traffic flow management problem[J]. IFAC Proceedings Volumes, 2006, 39(12):96-100.
[168] BERTSIMAS D, LULLI G, ODONI A. An integer optimization approach to large-scale air traffic flow management[J]. Operations Research, 2011, 59(1):211-227.
[169] RUIZ S, KADOUR H, CHOROBA P. A novel air traffic flow management model to optimise network delay towards innovative enhancements for computer-assisted slot allocation (CASA)[R]. Washington, D.C.:FAA,2019.
[170] Federal Aviation Administration. Global air navigation plan for CNS/ATM systems:Doc 9750[S].Montréal:International Civil Aviation Organization (ICAO), 2016.
[171] DENERY D G, ERZBERGER H. The center-tracon automation system:Simulation and field testing:Modelling and simulation in air traffic management[M]. Berlin:Springer Berlin Heidelberg, 1997:113-138.
[172] ZEGHAL K, PASUTTO P, HOFFMAN E. Proximity versus dynamicity-an analysis of traffic patterns at major European airports:AIAA-2019-3184[R]. Reston:AIAA, 2019.
[173] FAVENNEC B, HOFFMAN E, TRZMIEL A, et al. The point merge arrival flow integration technique:Towards more complex environments and advanced continuous descent:AIAA-2009-6921[R]. Reston:AIAA, 2009.
[174] LIANG M, DELAHAYE D, MARÉCHAL P. Integrated sequencing and merging aircraft to parallel runways with automated conflict resolution and advanced avionics capabilities[J]. Transportation Research Part C:Emerging Technologies, 2017, 85:268-291.
[175] THOMPSON S. Terminal area separation standards:Historical development, current standards, and processes for change[R]. Cambridge:MIT, 1997.
[176] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):179-189.
[177] KOCHENDERFER M J, ESPINDLE L P, KUCHAR J K, et al. A comprehensive aircraft encounter model of the national airspace system[J]. Lincoln Laboratory Journal, 2008, 17(2):41-53.
[178] TANG J. Conflict detection and resolution for civil aviation:a literature survey[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(10):20-35.
[179] 戴世强, 冯苏苇, 顾国庆. 交通流动力学:它的内容、方法和意义[J]. 自然杂志, 1997, 19(4):196-201. DAI S Q, FENG S W, GU G Q. Dynamics of traffic flow:Its content, methodolo-gy and intent[J]. Nature Magazine, 1997, 19(4):196-201(in Chinese).
文章导航

/