流体力学与飞行力学

超声速可调进气道内流双解现象及其节流特性

  • 金毅 ,
  • 孙姝 ,
  • 郭赟杰 ,
  • 谭慧俊 ,
  • 张悦
展开
  • 1.南京航空航天大学 能源与动力学院 江苏省航空动力系统重点实验室,南京 210016
    2.南京航空航天大学 民航学院,南京 211106
.E-mail: sunshu@nuaa.edu.cn

收稿日期: 2022-03-10

  修回日期: 2022-03-24

  录用日期: 2022-04-11

  网络出版日期: 2022-04-24

基金资助

国家自然科学基金(U20A2070)

Dual solution internal flow phenomenon and throttling characteristics of a supersonic variable inlet

  • Yi JIN ,
  • Shu SUN ,
  • Yunjie GUO ,
  • Huijun TAN ,
  • Yue ZHANG
Expand
  • 1.Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
E-mail: sunshu@nuaa.edu.cn

Received date: 2022-03-10

  Revised date: 2022-03-24

  Accepted date: 2022-04-11

  Online published: 2022-04-24

Supported by

National Natural Science Foundation of China(U20A2070)

摘要

为研究超声速可调进气道喉道调节过程中的内流结构及节流特性,设计了工作马赫数范围为0~4的超声速可调进气道,在来流马赫数为2.9的风洞中借助高速纹影观测系统和动态压力测量系统开展了试验研究。结果表明当内收缩比(ICR)为1.79时,进气道通流流场存在设计和非设计流态的内流双解现象。其中,在设计流态下进气道内通道中的波系结构正常建立;而在非设计流态下进气道内收缩段中存在局部分离诱导的复杂波系结构,导致其整体压升高于设计流态,并存在宽频、低频的小幅振荡。此外设计和非设计流态下进气道的下游节流性能相当,其临界堵塞度分别为42.4%和41.7%,临界压比分别为15.8和16.0。在两类流态的下游节流过程中扰动均以结尾斜激波串的形式向上游传播,且临界状态下激波串头波刚好位于喉道附近,但两类流态的结尾激波串在空间分布特征和振荡特性上均存在明显区别。

本文引用格式

金毅 , 孙姝 , 郭赟杰 , 谭慧俊 , 张悦 . 超声速可调进气道内流双解现象及其节流特性[J]. 航空学报, 2023 , 44(7) : 127134 -127134 . DOI: 10.7527/S1000-6893.2022.27134

Abstract

A supersonic variable inlet with an operating Mach number ranging from 0–4 was designed to investigate its internal flow structures and throttling characteristics. All tests were conducted in the wind tunnel at a freestream Mach number of 2.9 with the aid of the high-speed schlieren and dynamic pressure data-acquisition systems. The results show that when the Internal Contraction Ratio (ICR) is 1.79, the unthrottled internal flowfield of the inlet has the dual solution of designed and undesigned flow states. In the designed flow state, the wave system in the inlet internal duct is normally established; while in the undesigned flow state, there is a complex wave system induced by local separation in the inlet internal contraction part, resulting in its overall pressure rise higher than that of the designed flow state and the presence of broadband, low-frequency small-amplitude oscillations. In addition, the inlet downstream throttling performance in the designed and undesigned flow states is comparable with critical throttling ratios of 42.4% and 41.7% and critical pressure ratios of 15.8 and 16.0, respectively. During the downstream throttling process in both types of flow states, the disturbance propagates upstream in the form of an oblique terminal shock train, and the head wave of the shock train in the critical state is located just near the throat station. However, apparent differences exist in the spatial distribution characteristics and oscillatory features of the terminal shock train of the two flow states.

参考文献

1 SCHERRER R, GOWEN F E. Preliminary experimental investigation of a variable-area, variable-internal-contraction air inlet at Mach numbers between 1.42 and 2.44: NACA RM A55F23[R]. Washington, D.C.: NASA, 1955.
2 SCHERRER R, ANDERSON W E. Investigation of the performance and internal flow of a variable-area, variable-internal-contraction inlet at Mach numbers of 2.00, 2.50, and 2.92: NACA RM A58C24[R]. Washington, D.C.: NASA, 1958.
3 FALEMPIN F, WENDLING E, GOLDFELD M, et al. Experimental investigation of starting process for a variable geometry air inlet operating from Mach 2 to Mach 8[C]∥ 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006.
4 TAGUCHI H, YANAGI R. A study on pre-cooled turbojet-scramjet-rocket combined engines[C]∥ 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998.
5 SANDERS B W, WEIR L J. Aerodynamic design of a dual-flow Mach 7 hypersonic inlet system for a turbine-based combined-cycle hypersonic propulsion system: NASA/CR-2008-215214[R]. Washington, D.C.: NASA, 2008.
6 陈兵, 谷良贤, 龚春林. 加速型高超飞行器变几何进气道设计分析[J]. 固体火箭技术201336(4): 431-436.
  CHEN B, GU L X, GONG C L. Study on variable geometry inlet of acceleration hypersonic vehicle[J]. Journal of Solid Rocket Technology201336(4): 431-436 (in Chinese).
7 王德鹏, 庄逸, 谭慧俊, 等. 一种双流路变几何涡轮基组合循环进气道的设计与仿真[J]. 航空动力学报201530(11): 2695-2704.
  WANG D P, ZHUANG Y, TAN H J, et al. Design and simulation of a dual-channel variable geometry turbine based combined cycle inlet[J]. Journal of Aerospace Power201530(11): 2695-2704 (in Chinese).
8 李永洲, 刘晓伟, 张蒙正, 等. 马赫数2.5~7.0的二元变几何进气道设计[J]. 火箭推进201541(5): 17-22.
  LI Y Z, LIU X W, ZHANG M Z, et al. Design of a two dimensional variable geometry inlet with Mach number 2.5-7.0[J]. Journal of Rocket Propulsion201541(5): 17-22 (in Chinese).
9 HOHN O, GUELHAN A. Analysis of a three-dimensional, high pressure ratio scramjet inlet with variable internal contraction[C]∥ 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
10 李彪, 魏志军, 迟鸿伟, 等. 进气道内压缩比对固体燃料超燃冲压发动机性能的影响[J]. 航空动力学报201631(2): 459-466.
  LI B, WEI Z J, CHI H W, et al. Effect of inlet internal contraction ratio on performance of solid fuel scramjet[J]. Journal of Aerospace Power201631(2): 459-466 (in Chinese).
11 JIN Y, SUN S, TAN H J. Flow response hysteresis of throat regulation process of a two-dimensional mixed-compression supersonic inlet[J]. Chinese Journal of Aeronautics202235(3): 112-127.
12 MURTHY S N B, CURRAN E T. Scramjet Propulsion[M]. Reston: AIAA, 2001: 447?511.
13 VAN WIE D, KWOK F, WALSH R. Starting characteristics of supersonic inlets[C]∥ 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996.
14 LIU Y, WANG L, QIAN Z S, et al. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology201879: 647-657.
15 YUE L J, JIA Y N, XU X, et al. Effect of cowl shock on restart characteristics of simple ramp type hypersonic inlets with thin boundary layers[J]. Aerospace Science and Technology201874: 72-80.
16 TAN H J, LI L G, WEN Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal201149(2): 279-288.
17 WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal200947(6): 1528-1542.
18 MURAKAMI A, YANAGI R, SHINDO S, et al. Mach 3 wind tunnel test of mixed compression supersonic inlet[C]∥ 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992.
19 REINARTZ B U, HERRMANN C D, BALLMANN J, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power200319(5): 868-875.
20 TRAPIER S, DUVEAU P, DECK S. Experimental study of supersonic inlet buzz[J]. AIAA Journal200644(10): 2354-2365.
21 LEE H J, LEE B J, KIM S D, et al. Flow characteristics of small-sized supersonic inlets[J]. Journal of Propulsion and Power201127(2): 306-318.
22 ZHANG J S, YUAN H C, WANG Y F, et al.Experiment and numerical investigation of flow control on a supersonic inlet diffuser[J]. Aerospace Science and Technology2020106: 106182.
23 LI Z F, GAO W Z, JIANG H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal201351(10): 2485-2492.
24 王晨曦, 谭慧俊, 张启帆, 等. 高超声速进气道低马赫数不起动和再起动试验[J]. 航空学报201738(11): 43-54.
  WANG C X, TAN H J, ZHANG Q F, et al. Test of low Mach number unstart and restart processes of hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica201738(11): 43-54 (in Chinese).
25 ZHUANG Y, TAN H J, HUANG H X, et al. Fractal characteristics of turbulent?non?turbulent interface in supersonic turbulent boundary layers[J]. Journal of Fluid Mechanics2018843: R2.
26 CHEN H, TAN H J, LIU Y Z, et al. External-compression supersonic inlet free from violent buzz[J]. AIAA Journal201957(6): 2513-2523.
27 MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media[J]. Geophysics198247(2): 203-221.
28 MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory—Part II: Sampling theory and complex waves[J]. Geophysics198247(2): 222-236.
29 TAN H J, SUN S, HUANG H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids201253(6): 1647-1661.
30 XIONG B, FAN X Q, WANG Y, et al. Experimental study on self-excited and forced oscillations of an oblique shock train[J]. Journal of Spacecraft and Rockets201855(3): 640-647.
31 LI N, CHANG J T, XU K J, et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids201830(11): 116102.
32 王德鑫, 褚佑彪, 刘难生, 等. 高背压进气道中内外流耦合作用的大涡模拟[J]. 航空学报202142(9): 625754.
  WANG D X, CHU Y B, LIU N S, et al. Large-eddy simulation of external and internal coupling flow in high back pressure inlet[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625754 (in Chinese).
文章导航

/