固体力学与飞行器总体设计

水陆两栖飞机灭火飞行仿真系统构建与仿真

  • 蔡志勇 ,
  • 石含玥 ,
  • 赵红军 ,
  • 李天琦 ,
  • 王希宇 ,
  • 周尧明
展开
  • 1.中航通飞华南飞机工业有限公司,珠海  519040
    2.中国特种飞行器研究所,荆门  448035
    3.北京航空航天大学 航空科学与工程学院,北京  100191
    4.北京航空航天大学 先进无人飞行器北京市高精尖学科中心,北京  100191

收稿日期: 2022-02-14

  修回日期: 2022-03-03

  录用日期: 2022-04-08

  网络出版日期: 2022-04-24

基金资助

国家自然科学基金(61903014);航空科学基金(20200017051001)

Construction and simulation of amphibious aircraft fire⁃fighting flight simulation system

  • Zhiyong CAI ,
  • Hanyue SHI ,
  • Hongjun ZHAO ,
  • Tianqi LI ,
  • Xiyu WANG ,
  • Yaoming ZHOU
Expand
  • 1.AVIC General Huanan Aircraft Industry Co. ,Ltd. ,Zhuhai  519040,China
    2.China Special Vehicle Research Institute,Jingmen  448035,China
    3.School of Aeronautic Science and Engineering,Beihang University,Beijing  100191,China
    4.Beijing Advanced Discipline Center for Unmanned Aircraft System,Beihang University,Beijing  100191,China

Received date: 2022-02-14

  Revised date: 2022-03-03

  Accepted date: 2022-04-08

  Online published: 2022-04-24

Supported by

National Nature Science Foundation of China(61903014);Aeronautical Science Foundation of China(20200017051001)

摘要

大型固定翼灭火飞机是应对森林火灾最有效的工具之一。首先针对中国缺少大型灭火飞机投水灭火飞行仿真系统的现状,基于水陆两栖灭火飞机投水灭火任务流程,对投汲水灭火仿真任务子系统、灭火飞机投汲水灭火仿真场景构建、投水数据处理与灭火效能评估方法进行了研究,设计和构建了一种水陆两栖飞机灭火飞行仿真系统,实现了大型灭火飞机投水灭火任务全流程飞行仿真。其次通过使用K-S检验方法对仿真飞行投水数据与真实飞行试验投水数据进行统计学检验,证实了本仿真系统具有较高的仿真真实度。最后还研究了在灭火飞行仿真中投水速度和投水高度对投水覆盖面积、投水均匀度和投水有效利用率3个灭火效能参数的影响,为灭火飞机指挥员进行投水方案的制订提供了支撑。本文成果对于提高灭火飞机飞行员培训效率,节省培训费用,节约灭火飞机飞行试验费用,缩短飞行试验的时间,加快中国森林航空消防力量建设具有参考意义。

本文引用格式

蔡志勇 , 石含玥 , 赵红军 , 李天琦 , 王希宇 , 周尧明 . 水陆两栖飞机灭火飞行仿真系统构建与仿真[J]. 航空学报, 2023 , 44(6) : 227036 -227036 . DOI: 10.7527/S1000-6893.2022.27036

Abstract

Large fixed-wing firefighting aircraft are one of the most effective tools to deal with forest fires. Nevertheless, China still lacks a fire-fighting aircraft flight simulation system for water dropping mission. Based on the amphibious fire-fighting aircraft fire-fighting task process, this paper researches the fire-fighting simulation task subsystem, fire-fighting aircraft water-fighting simulation scenario construction, water-fighting data processing and fire-fighting effectiveness evaluation methods, and then constructs an amphibious aircraft fire-fighting flight simulation system to realize the whole process of large fire-fighting aircraft water-fighting task flight simulation. Furthermore, by using the K-S test method to statistically check the simulation flight water drop data and the real flight test water drop data, this paper confirms that the simulation system has a high degree of simulation realism. Besides, this study investigates the effects of water delivery speed and water delivery height on three firefighting effectiveness parameters: water delivery coverage area, water delivery uniformity and effective water delivery utilization rate in firefighting flight simulation, which provides support for firefighting aircraft commanders in the formulation of water delivery plans. The results of this paper are of great significance to improve the training efficiency of fire-fighting aircraft pilots, save training costs, shorten the time of flight test and accelerate the construction of forest aviation fire fighting force in China.

参考文献

1 中国国家林业局. 2020年中国国土绿化状况公报[J].国土绿化2021(3): 4-9.
  China State Forestry Administration. State of China’s land greening in 2020[J]. Land Greening2021(3): 4-9 (in Chinese).
2 中国国家林业局. 全国森林防火规划(2016-2025年)[EB/OL]. (2016-12-29)[2022-01-23]. .
  China State Forestry Administration. National forest fire prevention plan (2016-2025)[EB/OL]. (2016-12-29)[2022-01-23]. (in Chinese).
3 田国华, 杨松. 我国31个地区森林火灾时空分布特征[J]. 森林防火2013(2): 10-14.
  TIAN G H, YANG S. Temporal and spatial distribution characteristics of forest fires in 31 regions of China [J]. Forest Fire Prevention2013(2): 10-14 (in Chinese).
4 曾雪艳, 杨金明, 李士美. 2003—2018年中国森林火灾时空分布格局研究[J]. 林业调查规划202146(2): 53-58, 168.
  ZENG X Y, YANG J M, LI S M. Spatial and temporal pattern of forest fires in China from 2003 to 2018[J]. Forest Inventory and Planning202146(2): 53-58, 168 (in Chinese).
5 LUO J, GUO Z D, GENG Y S. The development of large fix-wing firefighting aircraft[J]. International Aviation20207: 51-53.
6 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报201940(1): 522708.
  HUANG L C, YONG M P. Key technologies and industrial application prospects of amphibian aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522708 (in Chinese).
7 TAKESHI I, HIROYUKI K, YUSHI G, et al. Water-dropping aerodynamics for fire-fighting amphibian[C]∥ 27th Congress of the International Council of the Aeronautical Science, 2010:628-637.
8 刘艳, 邢志祥, 刘伟. 虚拟现实技术在消防模拟训练中的应用研究进展[J]. 消防科学与技术200928(3): 214-216.
  LIU Y, XING Z X, LIU W. Research on the application of virtual reality technology in fire simulated training[J]. Fire Science and Technology200928(3): 214-216 (in Chinese).
9 靳学胜, 袁狄平. 基于Vega的灭火救援视景仿真研究[J]. 火灾科学200716(2): 111-114, 123.
  JIN X S, YUAN D P. Fire fighting and rescuing scene simulation based on Vega[J]. Fire Safety Science200716(2): 111-114, 123 (in Chinese).
10 王冬, 杜扬, 李康宁. 军用油库油罐火灾消防虚拟现实仿真模型研究[J]. 后勤工程学院学报200622(2): 19-23.
  WANG D, DU Y, LI K N. Study on fire-fighting VR simulation model for military fuel depot tank[J]. Journal of Logistical Engineering University200622(2): 19-23 (in Chinese).
11 SéRO-GUILLAUME O. On large scale forest fires propagation models[J]. International Journal of Thermal Sciences200847(6): 680-694.
12 LIU Y X. Spread vector induced cellular automata model for real-time crown fire behavior simulation[J]. Environmental Modelling & Software2018108: 14-39.
13 TESSENDORF J. Simulating ocean water[C]∥ Proceedings of the 2001 ACM SIGGRAPH. Los Angeles: ACM Press, 2001: 3-13.
14 JENSEN L S, GOLIAS R. Deep water animation and rendering [C]∥ Game Developer’s Conference, 2001.
15 王顺利. 大规模海浪三维可视化研究[D]. 西安: 西北工业大学, 2017.
  WANG S L. Research of large-scale ocean waves 3D visualization[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
16 WANG X Y, LIU H, TIAN Y L, et al. A fast optimization method of water-dropping scheme for fixed-wing firefighting aircraft[J]. IEEE Access9: 120815-120832.
17 王希宇. 面向森林灭火任务的固定翼灭火机投水策略研究[D]. 北京: 北京航空航天大学, 2022: 12-44.
  WANG X Y. Research on water-dropping strategy of fixed-wing firefighting aircraft for forest fire extinguishing mission[D]. Beijing: Beihang University, 2022: 12-44 (in Chinese).
18 HAN Y, LIU H, TIAN Y, et al. Virtual reality oriented modeling and simulation of water-dropping from helicopter[C]∥ Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality. New York: Association for Computing Machinery, 2018: 24-29.
19 AMORIM J H. Numerical modelling of the aerial drop of products for forest firefighting[D]. Portugal: Universidade de Aveiro, 2008.
20 ALBERTSON M L, DAI Y B, JENSEN R A, et al. Diffusion of submerged jets[J]. Transactions of the American Society of Civil Engineers1950115(1): 639-664.
21 REITZ R D. Modeling atomization processes in high-pressure vaporizing sprays[J]. Atomisation Spray Technology19873(4): 309-337.
22 LEGENDRE D, BECKER R, ALMéRAS E, et al. Air tanker drop patterns[J]. International Journal of Wildland Fire201423(2): 272-280.
23 SHI H Y, XIE H, HU X, et al. Research and design of amphibious aircraft fire-extinguishing simulation management system based on DIS[C]∥32nd Congress of the International Council of the Aeronautical Sciences. Shanghai: International Council of the Aeronautical Sciences, 2021:1-10.
24 申蒸洋, 陈孝明, 黄领才. 大型水陆两栖飞机特殊任务模式对总体设计的挑战[J]. 航空学报201940(1): 522400.
  SHEN Z Y, CHEN X M, HUANG L C. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522400 (in Chinese).
文章导航

/