火星降落伞开伞过程形态参数辨识与应用
收稿日期: 2022-01-28
修回日期: 2022-03-03
录用日期: 2022-04-11
网络出版日期: 2022-04-24
基金资助
国家科技重大专项
Application of morphological parameter identification for Mars parachute during opening process
Received date: 2022-01-28
Revised date: 2022-03-03
Accepted date: 2022-04-11
Online published: 2022-04-24
Supported by
National Science and Technology Major Project
针对柔性目标降落伞开伞过程的形态变化大、光照强度变化大、运动规律性差、存在遮挡等问题,提出了一种基于多算法融合的视觉测量技术的降落伞开伞过程形态参数辨识方法。首先,设计了具有视觉测量靶标功能的降落伞图案,提供了丰富的具有可区分度的标记点,能够准确地对定位点进行跟踪和测量,并开展了双目相机内、外参标定。其次,提出了应用对极几何原理,采用基于暗通道的图像增强技术,提高了图像质量,有效地减轻了各种噪声和过曝光等环境因素的影响;采用稀疏编码超分辨率重建算法,改进了特征点的像素级提取,实现了高精度的亚像素级特征提取;采用特征跟踪扩展卡尔曼滤波算法,提升了特征匹配跟踪的精度和效率。最后,通过全尺寸高空开伞试验的验证,结果表明该方法能够达到较高的辨识精度,具有较好的准确性和鲁棒性。此方法在中国首次火星探测“天问一号”探测器上成功得到了应用,精确地从双目影像中辨识出降落伞开伞过程形态参数,对设计和分析降落伞开伞工况提供了重要的技术参考和数据积累。
关键词: 火星降落伞; 开伞过程; 形态参数辨识; 稀疏编码超分辨率重建; 特征跟踪扩展卡尔曼滤波
邹昕 , 李明磊 , 朱岱寅 , 饶炜 , 韩承志 , 李莹 . 火星降落伞开伞过程形态参数辨识与应用[J]. 航空学报, 2023 , 44(6) : 227007 -227007 . DOI: 10.7527/S1000-6893.2022.27007
Aiming at the difficulty in obtaining data for flexible targets under conditions such as significant changes in morphology, large variation in light intensity, poor regularity of motion, and existence of target occlusion during the parachute opening process, we propose a morphological parameter identification method based on vision measurement of multi-algorithm fusion. Firstly, we design a parachute pattern with the visual measurement function for targets, providing a wealth of distinguishable marker points to accurately track and measure the anchor points. The internal and external parameter calibration of binocular cameras is carried out. Then the application of the epipolar geometry principle is proposed. The image enhancement technology based on the dark channel is adopted to improve the image quality and effectively reduce the influence of various environmental factors such as noise and overexposure. The feature tracking of the extended Kalman filter algorithm is used to improve the accuracy and efficiency of feature matching tracking. The super-resolution reconstruction algorithm based on sparse coding is employed to improve the pixel-level extraction of feature points and achieve high precision sub-pixel level feature extraction. Finally the identification method is verified by a full-size high-altitude parachute opening experiment. The results show that the method can achieve high identification accuracy with good precision and robustness. This identification method is successfully applied to the circumlunar return and reentry spacecraft of China’s first Mars exploration mission – Tianwen -1 probe. The morphological parameters during the parachute opening process are accurately identified from binocular images, and the on-orbit results provide important technical reference and data accumulation for the design and analysis of parachute opening conditions.
1 | FOUGHNER J T. Viking Mars mission support investigations in the Langley transonic dynamics tunnel: TM-80234[R]. Washington,D.C.: NASA, 1980. |
2 | FALLON II E J. System design overview of the Mars Pathfinder parachute decelerator subsystem: AIAA-1997- 1511[R]. Reston: AIAA, 1997. |
3 | WITKOWSKI A. Mars Pathfinder parachute system performance: AIAA-1999-1701[R]. Reston: AIAA, 1999. |
4 | WITKOWSKI A, BRUNO R. Mars exploration rover parachute decelerator system program overview: AIAA-2003-2100[R]. Reston: AIAA, 2003. |
5 | WITKOWSKI A, KANDIS M, BRUNO R, et al. Mars exploration rover parachute system performance: AIAA-2005-1605[R]. Reston: AIAA, 2005. |
6 | PRINCE J L, DESAI P N, QUEEN E M, et al. Mars phoenix entry, descent, and landing simulation design and modeling analysis[J]. Journal of Spacecraft and Rockets, 2011, 48(5): 756-764. |
7 | WITKOWSKI A, KANDIS M, ADAMS D. Mars scout phoenix parachute system performance: AIAA-2009-2907[R]. Reston: AIAA, 2009. |
8 | SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. Findings from the supersonic qualification program of the Mars science laboratory parachute system: AIAA-2009-2900[R]. Reston: AIAA, 2009. |
9 | CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation: AIAA-2013-1276[R]. Reston: AIAA, 2013. |
10 | WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance: AIAA-2013-1277[R]. Reston: AIAA, 2013. |
11 | 王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997. |
WANG L R. Parachute theory and application[M]. Beijing: China Astronautics Press, 1997 (in Chinese). | |
12 | 于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感, 2007, 28(4): 12-16. |
YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(4): 12-16 (in Chinese). | |
13 | 贾贺, 包进进, 荣伟. 设计参数及大气参数对降落伞充气性能的影响[J]. 航天返回与遥感, 2020, 41(3): 28-36. |
JIA H, BAO J J, RONG W. The design and atmospheric parameters influences on parachute inflation performance[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(3): 28-36 (in Chinese). | |
14 | BARBER J, JOHARI H. Experimental investigation of personnel parachute designs using scale model wind tunnel testing: AIAA-2001-2074[R]. Reston: AIAA, 2001. |
15 | SHANNON M P. Experimental analysis of the pressure distribution on a 35-foot personnel parachute: AIAA- 2001-2008[R]. Reston: AIAA, 2001. |
16 | DESABRAIS K J, JOHARI H. The flow in the near wake of an inflating parachute canopy: AIAA-2001-2009[R]. Reston: AIAA, 2001. |
17 | DESABRAIS K J. Velocity field measurements in the near wake of a parachute canopy[D]. Worcester: Worcester Polytechnic Institute, 2002. |
18 | STEIN K. Parachute fluid-structure interactions: 3-D computation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(3-4): 373-386. |
19 | 高兴龙, 张青斌, 丰志伟, 等. 集成火星进入弹道的开伞过程动力学特性研究[J]. 宇航学报, 2016, 37(6): 664-670. |
GAO X L, ZHANG Q B, FENG Z W, et al. Study on dynamic characteristic of opening process integrating with Mars entry trajectory[J]. Journal of Astronautics, 2016, 37(6): 664-670 (in Chinese). | |
20 | SCHOENENBERGER M, QUEEN E M, CRUZ J R. Parachute aerodynamics from video data: AIAA-2005- 1633[R]. Reston: AIAA, 2005. |
21 | 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1): 70-79. |
ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1): 70-79 (in Chinese). | |
22 | 宋晋, 马军, 蒋敏, 等. 双目视觉系统在风洞伞摆角测量中的研究与应用[J]. 计算机测量与控制, 2012, 20(8): 2042-2044. |
SONG J, MA J, JIANG M, et al. Research and application of parachute swing angle in wind tunnel test based on stereo vision measurement system[J]. Computer Measurement & Control, 2012, 20(8): 2042-2044 (in Chinese). | |
23 | 杨贤文, 郝东, 易国庆, 等. 火星探测降落伞模型高速风洞变迎角试验技术[J]. 宇航学报, 2019, 40(12): 1461-1467. |
YANG X W, HAO D, YI G Q, et al. Variable angle of attack test technique of Mars exploration parachute model in high speed wind tunnel[J]. Journal of Astronautics, 2019, 40(12): 1461-1467 (in Chinese). | |
24 | LATEGAHN H, DERENDARZ W, GRAF T, et al. Occupancy grid computation from dense stereo and sparse structure and motion points for automotive applications[C]∥2010 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2010. |
25 | KRYS D, NAJJARAN H. INS assisted vision-based localization in unstructured environments[C]∥2008 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Press, 2008. |
26 | 李建, 李小民, 钱克昌, 等. 基于双目视觉和惯性器件的微小型无人机运动状态估计方法[J]. 航空学报, 2011, 32(12): 2310-2317. |
LI J, LI X M, QIAN K C, et al. Motion state estimation for micro UAV using inertial sensor and stereo camera pair[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2310-2317 (in Chinese). | |
27 | PREDMORE C R. Bundle adjustment of multi-position measurements using the Mahalanobis distance[J]. Precision Engineering, 2010, 34(1): 113-123. |
28 | DONOHO D L. For most large underdetermined systems of equations, the minimal l1-norm near-solution approx-imates the sparsest near-solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(7): 907-934. |
29 | YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2010, 19(11): 2861-2873. |
30 | YANG J C, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]∥2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2008. |
31 | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]∥ Curves and Surfaces. Haifa: Israel Institute of Technology, 2012. |
32 | YANG J C, WANG Z W, LIN Z, et al. Coupled dictionary training for image super-resolution[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2012, 21(8): 3467-3478. |
33 | LIU Y, SUN Z D. EKF-based adaptive sensor scheduling for target tracking[C]∥2008 International Symposium on Information Science and Engineering. Piscataway: IEEE Press, 2008. |
34 | 孙博文, 王大轶, 王炯琦, 等. 基于序列图像的航天器自主导航降维滤波方法[J]. 航空学报, 2021, 42(4): 524971. |
SUN B W, WANG D Y, WANG J Q, et al. Filter method for dimension reduction in spacecraft autonomous navigation based on sequence image[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524971 (in Chinese). | |
35 | RAJENDRAN V, OBRACZKA K, GARCIA-LUNA-ACEVES J J. Energy-efficient, collision-free medium access control for wireless sensor networks[J]. Wireless Networks, 2006, 12(1): 63-78. |
36 | 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32(6): 1084-1091. |
WANG K, CHEN T, XU S J. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1084-1091 (in Chinese). | |
37 | YE J Z, ZHAO L, LUO W F. Performances of localization algorithms in a prototype WSN system[J]. Advanced Materials Research, 2012, 457-458: 723-727. |
/
〈 |
|
〉 |