论文

自然层流机翼的翼套试验及数值方法

  • 陈艺夫 ,
  • 王一雯 ,
  • 邓一菊 ,
  • 王波 ,
  • 白俊强 ,
  • 卢磊
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 无人系统技术研究院, 西安 710072;
    3. 航空工业第一飞机设计研究院, 西安 710089;
    4. 中国科学院 工程热物理研究所, 北京 100190

收稿日期: 2021-12-10

  修回日期: 2022-03-17

  网络出版日期: 2022-04-24

基金资助

国家自然科学基金(11902320,12002284)

Experiment and numerical simulation of natural laminar flow wing glove

  • CHEN Yifu ,
  • WANG Yiwen ,
  • DENG Yiju ,
  • WANG Bo ,
  • BAI Junqiang ,
  • LU Lei
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China;
    3. AVIC The First Aircraft Institute, Xi'an 710089, China;
    4. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2021-12-10

  Revised date: 2022-03-17

  Online published: 2022-04-24

Supported by

National Natural Science Foundation of China (11902320,12002284)

摘要

基于某公务机飞行试验平台设计改装的自然层流翼套构型,以飞行试验为核心,开展了前期的数值方法和风洞试验研究。风洞试验和飞行试验均采用红外热像技术进行转捩探测。同时,使用基于线性稳定理论的eN方法对试验构型进行了数值模拟分析,探究攻角、压力分布形态对Tollmien-Schlichting (T-S)波失稳主导转捩的影响机制。研究结果表明,风洞试验构型在-2°~2°攻角范围内上翼面维持大范围的顺压力梯度,T-S波的增长得到了有效抑制,实现了50%c(弦长)以上的层流区,转捩发生在压力恢复区;在4°攻角工况下,头部出现明显的逆压力梯度,T-S波快速增长并发生失稳,转捩位置提前至20%c。飞行试验条件下的结果表明,压力分布形态对T-S波的影响机制与风洞试验一致;在高湍流度低雷诺数的风洞试验条件和低湍流度高雷诺数的飞行试验条件下,采用湍流度和Mack公式确定T-S波临界N因子,得到的转捩预测结果与试验结果均吻合较好,表明本文数值方法具有良好的预测精度和鲁棒性。

本文引用格式

陈艺夫 , 王一雯 , 邓一菊 , 王波 , 白俊强 , 卢磊 . 自然层流机翼的翼套试验及数值方法[J]. 航空学报, 2022 , 43(11) : 526793 -526793 . DOI: 10.7527/S1000-6893.2021.26793

Abstract

The preliminary numerical method and wind tunnel test research were conducted based on the modified natural laminar flow wing cover configuration of a business jet flight test platform, with the flight test as the core. Both wind tunnel tests and flight tests use the infrared (IR) thermal imaging technology for transition detection. Meanwhile, the LST-based eN method is used to carry out numerical simulation analysis of the experimental configuration, and to explore the influence mechanism of the angle of attack and pressure distribution on the dominant transition of Tollmien-Schlichting (T-S) wave instability. The research results show that the wind tunnel test configuration maintains a wide range of favorable pressure gradients on the upper surface in the angle of attack range of -2°-2°, and the T-S wave growth is effectively suppressed, achieving a chord length of more than 50% of the laminar flow region. In the laminar flow region, transition occurs in the pressure recovery area. An obvious inverse pressure gradient appears close to the leading edge at 4°, the T-S wave grows rapidly, and the transition position moves up to 20%c. The results under the flight test conditions show that the influence mechanism of the pressure distribution on the T-S wave is consistent with that in the wind tunnel test. Under the high turbulence and low Reynolds number wind tunnel test conditions, and the low turbulence and high Reynolds number flight test conditions, we use turbulence intensity and Mack formula to determine the critical N factor of the T-S wave, and the obtained transition prediction results are in good agreement with the experimental results, indicating that the numerical method has good prediction accuracy and robustness.

参考文献

[1] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报,2011,32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[2] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报,2016,37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[3] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.
[4] 赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报, 2022, 43(1):124894. ZHAO H, GAO Z H, XIA L. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):124894(in Chinese).
[5] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997:504-506. FANG B R. Aerodynamic layout design of aircraft[M]. Beijing:Aviation Industry Press, 1997:504-506(in Chinese).
[6] CAMPBELL R L, LYNDE M N. Building a practical natural laminar flow design capability[C]//35th AIAA Applied Aerodynamics Conference, 2017.
[7] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.
[8] HUE D, VERMEERSCH O, DUCHEMIN J, et al. Wind-tunnel and CFD investigations focused on transition and performance predictions of laminar wings[J]. AIAA Journal, 2017, 56(1):132-145.
[9] SHI Y Y, YANG T H, BAI J Q, et al. Research of transition criterion for semi-empirical prediction method at specified transonic regime[J]. Aerospace Science and Technology, 2019, 88:95-109.
[10] SHI Y, GROSS R, MADER C, et al. Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations[C]//2018 AIAA Aerospace Sciences Meeting, 2018.
[11] 耿子海,刘双科,王勋年,等. 二维翼型混合层流控制减阻技术试验研究[J]. 实验流体力学,2010, 24(1):46-50. GENG Z H, LIU S K, WANG X N, et al. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):46-50(in Chinese).
[12] 王菲,额日其太,王强,等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010, 25(4):918-924. WANG F, ERIQITAI, WANG Q, et al. Experimental investigation of HLFC mechanism on swept wing[J]. Journal of Aerospace Power, 2010, 25(4):918-924(in Chinese).
[13] 王菲,额日其太,王强,等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010, 24(3):54-58. WANG F, ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese).
[14] 邓双国, 额日其太, 聂俊杰. 后掠翼模型混合层流控制实验研究[J]. 实验流体力学, 2011, 25(3):30-33. DENG S G, ERIQITAI, NIE J J. Hybrid laminar flow control experiment on swept wing model[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):30-33(in Chinese).
[15] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[16] XU J K, FU Z Y, BAI J Q, et al. Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J]. Aerospace Science and Technology, 2018, 80:221-231.
[17] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报,2019,40(8):122740. LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122740(in Chinese).
[18] 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报,2020, 41(12):124098. CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over bodies with blunt nosetip[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124098(in Chinese).
[19] LYNDE M, CAMPBELL R, VIKEN S. Additional findings from the common research model natural laminar flow wind tunnel test[C]//AIAA Aviation 2019 Forum. 2019.
[20] CAMPBELL R L, LYNDE M N. Natural laminar flow design for wings with moderate sweep[C]//34th AIAA Applied Aerodynamics Conference, 2016.
[21] FOWELL L, ANTONATOS P. Some results from the X-21 A program-part 2:laminar flow flight test results on the X-21 A[R]. 1965.
[22] SOMERS D. Design and exper1imental results for a natural-laminar-flow airfoil for general aviation applications[R]. 1981.
[23] JOSLIN R. Overview of laminar flow control[R]. 1998.
[24] ANDERSON B, Jr MEYER R. Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach numbers from 0.700 to 0.825[R]. 1990.
[25] BRASLOW A L. History of suction-type laminar-flow control with emphasis on flight research:Monographs in aerospace history number 13[R]. 1999
[26] BELISLE M, NEALE T, REED H, et al. Design of a swept-wing laminar flow control flight experiment for transonic aircraft[C]//28th AIAA Applied Aerodynamics Conference, 2010:4381.
[27] ROBERTS M, REED H, SARIC W. A transonic laminar-flow wing glove flight experiment:Computational evaluation and linear stability[C]//30th AIAA Applied Aerodynamics Conference, 2012:2668.
[28] CROUCH J. Boundary-layer transition prediction for laminar flow control (invited)[C]//45th AIAA Fluid Dynamics Conference, 2015:2472.
[29] KREIN A, WILLIAMS G. Flightpath 2050:Europe's vision for aeronautics[C]//Innovation for Sustainable Aviation in a Global Environment:Proceedings of the Sixth European Aeronautics Days, 2012:63.
[30] CEBECI T. Stability and transition:theory and application:efficient numerical methods with computer programs[M]. Long Beach:Horizons Pub, 2004.
[31] JUNIPER M P, HANIFI A, THEOFILIS V. Modal stability TheoryLecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013[J]. Applied Mechanics Reviews, 2014, 66(2):024804.
[32] RESHOTKO E. Laminar flow control-viscous simulation[R]. 1984.
[33] MACK L M. Boundary-layer stability theory, in "Special course on stability and transition laminar flow"[R]. 1984.
[34] BRASLOW A L. Review of the effect of distributed surface roughness on boundary-layer transition[J]. Wear, 1962, 5(1):77.
[35] RIEDEL H, SITZMANN M. In-flight investigations of atmospheric turbulence[J]. Aerospace Science and Technology, 1998, 2(5):301-319.
文章导航

/