新一代超声速民机气动关键技术专栏

航空器声爆飞行试验测量技术研究进展

  • 宋亚辉 ,
  • 樊高宇 ,
  • 瞿丽霞 ,
  • 张跃林 ,
  • 徐悦 ,
  • 韩硕
展开
  • 1.中国飞行试验研究院 飞机飞行试验技术研究所,西安 710089
    2.中国航空研究院,北京 100012
.E-mail:songyahuilym@163.com

收稿日期: 2021-08-02

  修回日期: 2021-10-14

  录用日期: 2022-04-11

  网络出版日期: 2022-04-24

基金资助

国家级项目

Progress of aircraft sonic boom flight test measurement technology: Review

  • Yahui SONG ,
  • Gaoyu FAN ,
  • Lixia QU ,
  • Yuelin ZHANG ,
  • Yue XU ,
  • Shuo HAN
Expand
  • 1.Aircraft Flight Test Technology Institute,Chinese Flight Test Establishment,Xi’an 710089,China
    2.Chinese Aeronautical Establishment,Beijing 100012,China

Received date: 2021-08-02

  Revised date: 2021-10-14

  Accepted date: 2022-04-11

  Online published: 2022-04-24

Supported by

National Level Project

摘要

声爆影响航空器飞行的安全性、经济性、环保性等,通过飞行试验进行真实条件下的声爆测量是进行声爆问题研究的重要技术手段。声爆飞行试验是一项复杂的系统工程,面临全传播路径声爆测量技术难点。首先,对近70年的航空器声爆飞行试验研究进行概览,总结了技术发展阶段;其次,对声爆传播特征及对测量的要求进行简要分析,总结了声爆飞行试验测量技术方案;再次,对近场至地面的全传播路径声爆测量关键技术以及辅助参数测量技术进行综述,解析技术要点和发展趋势;最后,对声爆飞行试验测量技术及其发展方向进行了总结,且对中国声爆飞行试验技术研究现状进行简略分析,并提出了建议。

本文引用格式

宋亚辉 , 樊高宇 , 瞿丽霞 , 张跃林 , 徐悦 , 韩硕 . 航空器声爆飞行试验测量技术研究进展[J]. 航空学报, 2023 , 44(2) : 626186 -626186 . DOI: 10.7527/S1000-6893.2022.26186

Abstract

Sonic boom is a key factor affecting safety, economy, and environmental-friendliness of supersonic aircraft flight. Measuring and assessing sonic boom under real atmospheric conditions through flight tests is an important technical approach in induced problem research. The sonic boom measurement flight test is a complicated systematic engineering work, requiring breakthroughs of a series of sonic boom field measurement techniques from near-field to far-field. This paper presents an overview of sonic boom measurement flight test activities over the nearly past seventy years, and summarizes the development history and characteristics of the sonic boom flight test technology in three stages. Based on the analysis of propagation characteristics of sonic boom, the technical measurement scheme of the entire propagation path is proposed. Then, the sonic boom measurement technology by probe aircraft, aerostat and ground facilities is reviewed with emphasis on technical points, and the development trends are prospected. Finally other necessary parameter measurement methods and some key issues and future research directions of sonic boom measurement techniques of flight tests are briefly presented. Based on this, the technical development deficiencies of sonic boom flight tests in China are analyzed and some research directions are suggested.

参考文献

1 HENNE P A. Case for small supersonic civil aircraft[J]. Journal of Aircraft200542(3): 765-774.
2 PLOTKIN K, MAGLIERI D. Sonic boom research: History and future (invited)[C]∥ 33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003.
3 Federal Aviation Administration. Electronic code of federal regulations, Part 91-General operating and flight rules, Subpart I - Operating noise limits [S]. Washington, D. C.: Federal Aviation Administration,1989.
4 CHUDOBA B, COLEMAN G, OZA A, et al. What price supersonic speed? A design anatomy of supersonic transportation Part 1[J]. The Aeronautical Journal (1968), 2008112: 141-151.
5 COWART R, GRINDLE T. An overview of the Gulfstream/NASA Quiet SpikeTM flight test program[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
6 LOUBEAU A. Recent progress on sonic boom research at NASA [C]∥ International Noise 2012, 2012.
7 BENSON L R. Quieting the boom: The shaped sonic boom demonstrator and the quest for quiet supersonic flight[M]. Washington, D.C.: NASA, 2013: 1-216.
8 MAGLIERI D, BOBBITT P, PLOTKIN K, et al. Sonic boom: Six decades of research: NASA/SP-2014-622 [R].Washington, D.C.: NASA, 2014.
9 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报201536(8): 2507-2528.
  ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica201536(8): 2507-2528 (in Chinese).
10 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报201937(4): 601-619, 600.
  QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica201937(4): 601-619, 600 (in Chinese).
11 Air Force U.S.. The sonic boom problem [R]. Washington, D.C.: Office, Director of Development Planning DCS/Research and Development HQ USAF, 1963.
12 朱自强, 吴宗成, 陈迎春. 民机空气动力设计先进技术[M]. 上海: 上海交通大学出版社, 2013: 49-54.
  ZHU Z Q, WU Z C, CHEN Y C. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2013: 49-54 (in Chinese).
13 GIPSON L. Low boom flight demonstrator (LBFD) [EB/OL]. (2018-9-5) [2021-7-20]. .
14 KAMLET M. NASA marks continued progress on X-59 [EB/OL]. (2020-9-7) [2021-7-20]. .
15 DOEBLER W J, RATHSAM J. How loud is X-59’s shaped sonic boom? [C]∥ Proceedings of Meetings on Acoustics, 5th International Conference on the Effects of Noise on Aquatic Life, 2019.
16 MASAHISA H, KENJI Y. D-send project for low sonic boom design technology [C]∥ 28th International Congress of the Aeronautical Sciences, 2012.
17 徐悦, 韩忠华, 尤延铖, 等. 新一代绿色超声速民机的发展现状与挑战[J]. 科学通报202065(S1): 127-133.
  XU Y, HAN Z H, YOU Y C, et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin202065(S1): 127-133 (in Chinese).
18 SAITO Y, UKAI T, MIYAKOSHI K, et al. Sonic boom estimation using the multipole method for free-flight experiments[C]∥ 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
19 FOMIN V M, KISELEVA T A, VOLKOV V F, et al. Sonic boom problem: Past, present and future [C]∥ Proceeding of the 1st International Conference on High-Speed Vehicle Science and Technology (HISST), 2018.
20 DE FLORIO F. Airworthiness: An introduction to aircraft certification and operations[M]. 3rd ed. Saint Louis: Elsevier Science, 2016.
21 HONDA M. D-SEND#2 successful flight [J]. JAXA Aeronautics Magazine Flight Path20159&10): 5-7.
22 GROSSARTH S, SCHRECKENBERG D, OOSTEN N V, et al. Psychological assessment of noise annoyance due to low sonic boom[C]∥ Forum Acusticum 2020, 2020.
23 EMMANUELLI A, LECHAT T, DRAGNA D, et al. Ground effects on sonic boom reflection[J]. The Journal of the Acoustical Society of America2019146(4): 2781.
24 L?VHOLT F, NOREN-COSGRIFF K, PARK J, et al. Building vibration due to sonic boom—Results from simulations and field measurements[J]. The Journal of the Acoustical Society of America2021149(4): A100.
25 Federal Aviation Administration. Fact sheet-supersonic flight [EB/OL]. (2020-11-25) [2021-7-20]. .
26 WAGGONER E, CLIATT L J, HILL M A, et al. An overview of lessons learned from sonic boom flight research projects conducted by NASA Armstrong flight research center[C]∥ 2018 Flight Testing Conference. Reston: AIAA, 2018.
27 HAERING E, CLIATT L, BUNCE T, et al. Initial results from the variable intensity sonic boom propagation database[C]∥ 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). Reston: AIAA, 2008.
28 DOWNING J. Lateral spread of sonic boom measurements from US Air Force boomfile flight tests: US Air Force AL-TR-1992-0095 [R]. Washington, D.C.: United States Air Force, 1992.
29 徐悦. 绿色超声速民机的低声爆设计与评估[J]. 国际航空2021(4): 30-32.
  XU Y. CAE developing low-boom supersonic civil aircraft concept[J]. International Aviation2021(4): 30-32 (in Chinese).
30 PARK M A, NEMEC M. Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft201856(3): 851-875.
31 RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft201856(3): 876-895.
32 MULLENS M E. A flight test investigation of the sonic boom: U.S. Air Force AFFTC TN 56-20 [R]. Washington, D.C.: United States Air Force, 1956.
33 ClOW L W. 6th weather wing pamphlet-weather-sonic boom: No.105-1-1 [R]. Washington, D.C.: 6th Weather Wing Air Weather Service, United States Air Force, 1966.
34 HILTON D, MAGLIERI D. Experiments on the effects of atmospheric refraction and airplane accelerations on sonic-boom ground-pressure patterns: NASA TN-D 3520 [R]. Washington, D.C.: NASA, 1966.
35 周自全. 飞行试验工程[M]. 北京: 航空工业出版社, 2010: 1-20.
  ZHOU Z Q. Flight test engineering[M]. Beijing: Aviation Industry Press, 2010: 1-20 (in Chinese).
36 KRYTER K, JOHNSON P J, YOUNG J R. Psychological experiments on sonic booms conducted at Edwards air force base: AD689844 [R]. California: Stanford Research Institute, 1968.
37 HUBBARD H H, MAYES WILLIAM H. Sonic boom effects on people and structures: NASA SP-147 [R]. Washington, D.C.: NASA, 1967.
38 MAGLIERI D J, HUCKEL V, HENDERSON R. Sonic boom measurements for SR-71 aircraft operating at Mach numbers to 3.0 and altitudes to 24384 meters: NASA TN D-6823 [R]. Washington, D.C.: NASA, 1972.
39 STEPHEN R N, EDWARD A, HAERING JR E A, et al. Ground-based sensors for the SR-71 sonic boom propagation experiment: NASA-TM-104310 [R]. Washington, D.C.: NASA, 1995.
40 HILTON D, HUBBARD H H, HUCKEL V, et al. Ground measurements of sonic-boom pressures for the altitude range of 10, 000 to 75, 000 feet: NASA TR R-198 [R]. Washington, D.C.: NASA, 1964.
41 WANNER J L, VALLEE J, VIVIER C, et al. Theoretical and experimental studies of the focus of sonic booms[J]. The Journal of the Acoustical Society of America197252(1A): 13-32.
42 HUBBARD H H, MAGLIERI D, HUCKEL V. Variability of sonic boom signatures with emphasis on the extremities of the ground exposure patterns: NASA SP-255 [R]. Washington, D.C.: NASA, 1971.
43 HAGLUND G, KANE E. Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity: NASA CR-2167 [R]. Washington, D.C.: NASA, 1973.
44 LISZKA L. Long‐distance focusing of Concorde sonic boom[J]. The Journal of the Acoustical Society of America197864(2): 631-635.
45 HABER J, NAKAKI D. Noise and sonic boom impact technology. Sonic boom damage to conventional structures: U.S. Air Force HSD-TR-89-001 [R]. Washington, D.C.: United States Air Force, 1989.
46 MACK R J. A Whitham theory sonic-boom analysis of the TU-144 aircraft at a Mach number of 2.2 [C]∥ 1995 NASA High-Speed Research Program Sonic Boom Workshop: Volume Ⅱ-Configuration a Design, Analysis, and Testing. Washington, D.C.: NASA, 1995: 1-17.
47 DOWNING M, ZAMOT N. USAF flight test investigation of focused sonic booms[J]. The Journal of the Acoustical Society of America199597(5): 3257.
48 HAERING E, EHERNBERGER L, WHITMORE S. Preliminary airborne measurements for the SR-71 sonic boom propagation experiment: NASA TM 104307 [R]. Washington, D.C.: NASA, 1995.
49 PAWLOWSKI J, GRAHAM D, BOCCADORO C, et al. Origins and overview of the shaped sonic boom demonstration program[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
50 HAERING JR. E A, MURRAY J E, PURIFOY D D,et al. Airborne measurements of shaped sonic boom demonstration aircraft pressure signatures and comparisons to CFD: AIAA-2005-0009 [R]. Reston: AIAA, 2005.
51 PLOTKIN K J, HAERING JR E A, MURRAY J E, et al. Ground data collection of shaped sonic boom experiment aircraft pressure signatures[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
52 HOWE D, WAITHE K, EDWARD HAERING J JR. Quiet spike near field flight test pressure measurements with CFD comparisons[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
53 CLIATT L J, HAERING E A, JONES T P, et al. A flight research overview of WSPR, a pilot project for sonic boom community response[C]∥ 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014.
54 PAGE J, PLOTKIN K, HAERING E, et al. SCAMP: Superboom caustic Analysis and measurement project overview[C]∥ 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
55 PAGE J, HOBBS C, HAERING E, et al. SCAMP: Focused sonic boom experimental execution and measurement data acquisition[C]∥ 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
56 CLIATT L J, HILL M A, HAERING E A, et al. A summary of the lateral cutoff analysis and results from NASA’s farfield investigation of no-boom thresholds[C]∥ AIP Conference Proceedings, 20151685(1): 090007.
57 KAMLET M. NASA flights off GALVESTONWILL test ways to measure response to low booms [J]. Airport Noise Report201830(36): 143-146.
58 钱战森, 刘中臣, 冷岩, 等. OS-X0试验飞行器声爆特性飞行测量与数值模拟分析[J]. 空气动力学学报201937(4): 675-682.
  QIAN Z S, LIU Z C, LENG Y, et al. Flight measurement and numerical simulation of sonic boom signature of OS-X0 experimental aircraft[J]. Acta Aerodynamica Sinica201937(4): 675-682 (in Chinese).
59 BELL D O. NASA deploys 30-Mile array ahead of quiet supersonic X-Plane tests [J]. Noise Regulation Report: The Nation's Only Independent Noise Control Publication201946(9): 73-74.
60 BTOADBENT M. Overture [J]. Air International201996(5): 98.
61 O'Hare MAUREEN. Boom supersonic aims to fly anywhere in the world in four hours for $ 100’ [N]. CNN Travel, 2021-5-18.
62 KAMLET M. NASA’s improved supersonic cockpit display shows precise locations of sonic booms [EB/OL]. (2016-12-18) [2021-7-20]. .
63 BUONANNO M, CHAI S, MARCONI F, et al. Overview of sonic boom reduction efforts on the lockheed martin N+2 supersonic validations program[C]∥ 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014.
64 MEREDITH K, DAHLIN J, GRAHAM D, et al. Computational fluid dynamics comparison and flight test measurement of F-5E off-body pressures[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
65 LIEBHARDT B, LüTJENS K, UENO A, et al. JAXA’s S4 supersonic low-boom airliner-A collaborative study on aircraft design, sonic boom simulation, and market prospects[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
66 WELGE H, NELSON C, BONET J. Supersonic vehicle systems for the 2020 to 2035 timeframe[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010.
67 SARROW V W, STOUT T A, BRADLEY K A, et al. SonicBAT: Some highlights and subsequent developments [C] ∥ 23rd International Congress on Acoustics (ICA 2019), 2019.
68 KAMLET M. NASA test flights examine effect of atmospheric turbulence on sonic booms [EB/OL]. (2018-7-27)[2021-7-20]. .
69 HEINECK J T, BANKS D W, SMITH N T, et al. Background-oriented schlieren imaging of supersonic aircraft in flight[J]. AIAA Journal202059(1): 11-21.
70 CREECH G. NASA Dryden flies new supersonic shockwave probes [EB/OL]. (2017-8-7) [2021-7-20]. .
71 Federal Aviation Administration. Special flight authorizations for supersonic aircraft FAA-2019-0415 (Amdt 91-362) [S]. Washington, D.C.: Federal Aviation Administration, 2021.
72 Federal Aviation Administration. Noise certification of supersonic airplanes FAA-2020-0316 (Notice No. 20-06) [S]. Washington, D.C.: Federal Aviation Administration, 2020.
73 PAGE J A, LOUBEAU A. Overall vehicle system noise: Sonic boom[J]. CEAS Aeronautical Journal201910(1): 335-353.
74 LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America2002111(1 Pt 2): 586-598.
75 MARSHALL A J. Development of a model of startle resulting from exposure to sonic booms [D]. West Lafayette: Purdue University, 2012.
76 BOLANDER C R, HUNSAKER D F, SHEN H, et al. Procedure for the calculation of the perceived loudness of sonic booms[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
77 WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly19589(2): 164-194.
78 LANSING D L. Some effect of flight maneuvers on the distribution of sonic booms [J]. Proceedings of Symposium on Atmospheric Acoustic Propagation19611: 24-43.
79 DOWNING M, ZAMOT N, MOSS C, et al. Controlled focused sonic booms from maneuvering aircraft[J]. The Journal of the Acoustical Society of America1998104(1): 112-121.
80 HENDERSON H R, HILTON D, HUCKEL V, et al. Measurements of sonic boom signatures from flights at cutoff Mach number: NASA SP-255 [R]. Washington, D.C.: NASA, 1971.
81 COULOUVRAT F, BLUMRICH R, HEIMANN D. Meteorologically induced variability of sonic boom of a supersonic aircraft in cruising or acceleration phase[C] ∥ International Symposium on Nonlinear Acoustics-Sonic-Boom Forum, 2006.
82 BAIZE D G, MCELROY M O, FENBERT J A, et al. A performance assessment of eight low-boom high-speed civil transport concepts: NASA CP-1999-209699 [R]. Washington, D.C.: NASA, 1999.
83 KANE E, PALMER T Y. Meteorological aspects of the sonic boom: FAA SRDS RD 64-160 [R]. Washington, D.C.: FAA, 1964.
84 RICKLEY E J, PIERCE A D. Detection and assessment of secondary sonic booms in New England[J]. The Journal of the Acoustical Society of America198169(S1): S100.
85 HUTCHINSON A D, BOWERSOX R D. A sonic boom propagation code for studying atmospheric effects and uncertainties[C]∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
86 YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in stratified atmosphere[J]. AIAA Journal201654(10): 3223-3231.
87 RENDóN P L, COULOUVRAT F. Reflection of caustics and focused sonic booms[J]. Wave Motion200542(3): 211-225.
88 WEINSTEIN L M, STACY K, VIEIRA G J, et al. Imaging supersonic aircraft shock waves[J]. Journal of Flow Visualization and Image Processing19974(3): 189-199.
89 KAMLET M. NASA flights advance celestial schlieren imagery for supersonic aircraft [EB/OL]. (2017-12-15) [2021-7-20]. .
90 NORRI G. Seen as well as heard [J]. Aviation Week & Space Technology2015177(18): 64.
91 GIPSON L, DUNBAR B. Low-boom flight demonstration: The mission [EB/OL]. (2020-9-18) [2021-7-20]. .
92 MAGLIERI D J, HUBBARD H H. Ground measurements of the shock-wave noise from supersonic bomber airplanes in the altitude range from 30 000 to 50 000 Feet: NASA TN D-880 [R]. Washington, D.C.: NASA, 1961.
93 LEE R A, DOWNING J M. Boom event analyzer recorder-Unmanned sonic boom monitor[J]. Journal of Aircraft199633(1): 171-175.
94 KAMLET M. Cutting edge ground recorders selected to measure future X-59 quiet supersonic flights [EB/OL]. (2021-3-22) [2021-7-20] .
95 HENDERSON H R, HUCKEL V, MAGLIERI D, et al. Variability in sonic-boom signatures measured along an 8000-foot linear array: NASA TN-5040 [R]. Washington, D.C.: NASA, 1969.
96 MAGLIERI D, HILTON D, MCLEOD N. Summary of sonic boom signatures resulting from atmospheric effects [C]∥ 5th Meeting of the (FAUSST) French Anglo-Saxon United States Supersonic Transport Committee, 1967.
97 HILTON D A, NEWMAN J W JR. Instrumentation techniques for measurement of sonic-boom signatures[J]. The Journal of the Acoustical Society of America196639(5B): S31-S35.
98 PLOTKIN K, PAGE J, GRAHAM D, et al. Ground measurements of a shaped sonic boom[C]∥ 10th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2004.
99 SCHULTZ T, UNDERBRINK J R, HUNTING C, et al. Finding the boom: Phased array processing applied to sonic boom direction of arrival estimation[C]∥ 22nd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2016.
100 MAGLIERI D J, RITCHIE V S, BRYANT J F JR. In-flight shock wave pressure measurements above and below a bomber airplane at Mach numbers from 1.42 to 1.69: NASA TN-D1968 [R]. Washington, D.C.: NASA, 1963.
101 MAGLIERI D J, HENDERSON H R, TINETTI A F. Measured sonic boom signatures above and below the XB-70 airplane flying at Mach 1.5 and 37 000 feet: NASA/CR-2011-217077 [R]. Washington, D.C.: NASA, 2011.
102 KAMLET M. NASA tests supersonic shock probe using historical NACA flight test technique [EB/OL]. (2019-12-6) [2021-7-20]. .
103 BANKS D, VANDAM C P, SHIU H, et al. Visualization of In-flight flow phenomena using infrared thermography[C]∥ 9th International Symposium on Flow Visualization, 2000.
104 MAGLIERI D. Sonic boom flight research-Some effects of airplane operations and the atmosphere on sonic boom signatures: NASA SP-147 [R]. Washington, D.C.: NASA, 1965.
105 MERINO-MARTíNEZ R, SIJTSMA P, SNELLEN M, et al. A review of acoustic imaging methods using phased microphone arrays[J]. CEAS Aeronautical Journal201910(1): 197-230.
106 YANG J L, HE L B, ZHU H J, et al. Progress of calibration on methods for high sound pressure microphone [C]∥ 26th International Congress on Sound and Vibration 2019: ICSV26, 2019.
107 TIAN B, LI K, LIU J, et al. Eccentric reflective optical fiber MEMS micro-pressure sensor [J]. Journal of Micromechanics and Microengineering202030(8): 085010.
108 HESSLER E, HESSLER D M, BRANDSTATT P, et al. Experimental study to determine wind-induced noise and windscreen attenuation effects on microphone response for environmental wind turbine and other applications [J]. Noise Control Engineering Journal200856(4): 300-309.
109 FIELDS R S JR, TSO J, SODERMAN P T. An experimental investigation of cavity flow oscillations and tones of an In-flow microphone[J]. International Journal of Aeroacoustics20065(2): 173-191.
110 CONNER M. NASA Armstrong fact sheet: Fiber optic sensing system [EB/OL]. (2018-1-17) [2021-7-20]. .
文章导航

/