机器人先进制造与装配技术专栏

大型复杂构件机器人制孔技术研究进展

  • 董松 ,
  • 郑侃 ,
  • 孟丹 ,
  • 廖文和 ,
  • 孙连军
展开
  • 南京理工大学 机械工程学院, 南京 210094

收稿日期: 2022-03-09

  修回日期: 2022-03-18

  网络出版日期: 2022-04-12

基金资助

国家自然科学基金(52075265)

Robotic drilling of large complex components: A review

  • DONG Song ,
  • ZHENG Kan ,
  • MENG Dan ,
  • LIAO Wenhe ,
  • SUN Lianjun
Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2022-03-09

  Revised date: 2022-03-18

  Online published: 2022-04-12

Supported by

National Natural Science Foundation of China (52075265)

摘要

航空装备大型复杂构件制造和装配中需要钻削数十万个机械连接孔,因而制孔效率和加工质量是保证飞行器使用性能和可靠性的关键。机器人制孔具有高柔性、高质量一致性以及高法向精度等优势,近年来采用机器人对飞机部件进行制孔在航空制造企业备受青睐。然而由于工业机器人的弱刚性以及叠层结构材料的难加工性,机器人钻削系统容易产生加工不稳定现象,严重制约了钻削质量和效率的进一步提高。目前,国内外学者在机器人制孔装备、制孔系统精度控制与机器人制孔稳定性等方面开展了理论与实验研究,并取得了诸多成果,但机器人钻削稳定性和加工质量控制研究的深度和广度仍存在较大的提升空间。为此,从机器人制孔末端执行器设计技术、机器人制孔定位精度控制技术、机器人制孔工艺过程控制技术以及机器人制孔装备研制四个方面对国内外文献进行总结和凝练,旨在为大型复杂构件机器人制孔技术的进一步研究提供指导。

本文引用格式

董松 , 郑侃 , 孟丹 , 廖文和 , 孙连军 . 大型复杂构件机器人制孔技术研究进展[J]. 航空学报, 2022 , 43(5) : 627133 -627133 . DOI: 10.7527/S1000-6893.2022.27133

Abstract

Hundreds of thousands of mechanical connection holes need to be drilled in the manufacturing and assembly of large and complex components of aerospace equipment, and thus hole-making efficiency and processing quality are the key to ensure the performance and reliability of an aircraft. For Drilling holes with robot has the advantages of high flexibility, high quality consistency and high normal accuracy, the use of robots to make holes for aircraft components has become popular in aerospace manufacturing companies in recent years. However, due to the weak rigidity of industrial robots and the difficult processing of stacked structure material, robotic drilling systems are prone to processing instability, which seriously restricts the further improvement of drilling quality and efficiency. At present, domestic and foreign scholars have carried out theoretical and experimental research on robotic machining equipment, hole-making system accuracy control and robotic hole-making stability, which have achieved many results, but the depth and breadth of research on robotic drilling stability and machining quality control still have a large room for improvement. To this end, this paper summarizes and condenses the domestic and international literature from four aspects:robotic hole-making end-effector design technology, robotic hole-making positioning accuracy control technology, robotic hole-making process control technology, and robotic hole-making equipment development, with the aim of providing guidance for further research on robotic hole-making technology for large and complex components.

参考文献

[1] 张兴金, 邓忠林. 浅谈纤维复合材料与中国大飞机[J]. 纤维复合材料, 2009, 26(2):24-26. ZHANG X J, DENG Z L. The discussion on carbon fiber composite and passenger-carrying aircraft of China[J]. Fiber Composites, 2009, 26(2):24-26(in Chinese).
[2] WANG F J, ZHAO M, FU R, et al. Novel chip-breaking structure of step drill for drilling damage reduction on CFRP/Al stack[J]. Journal of Materials Processing Technology, 2021, 291:117033.
[3] TANG L Y, LI P N, YU Z, et al. New drilling method for damage reduction of CFRP/Ti stacks drilling[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(1-2):595-602.
[4] RODRÍGUEZ A, CALLEJA A, DE LACALLE L N L, et al. Drilling of CFRP-Ti6Al4V stacks using CO2-cryogenic cooling[J]. Journal of Manufacturing Processes, 2021, 64:58-66.
[5] JIA Z Y, CHEN C, WANG F J, et al. Analytical model for delamination of CFRP during drilling of CFRP/metal stacks[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12):5099-5109.
[6] JAMES S, DANG C. Investigation of shear failure load in ultrasonic additive manufacturing of 3D CFRP/Ti structures[J]. Journal of Manufacturing Processes, 2020, 56:1317-1321.
[7] MEI B, ZHU W D, DONG H Y, et al. Coordination error control for accurate positioning in movable robotic drilling[J]. Assembly Automation, 2015, 35(4):329-340.
[8] XU J Y, JI M, CHEN M, et al. Investigation of minimum quantity lubrication effects in drilling CFRP/Ti6Al4V stacks[J]. Materials and Manufacturing Processes, 2019, 34(12):1401-1410.
[9] ZENG Y F, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):2745-2755.
[10] ZHANG J L, LIAO W H, BU Y, et al. Stiffness properties analysis and enhancement in robotic drilling application[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12):5539-5558.
[11] MALDONADO-ECHEGOYEN R, CASTILLO-CASTANEDA E, GARCIA-MURILLO M A. Kinematic and deformation analyses of a translational parallel robot for drilling tasks[J]. Journal of Mechanical Science and Technology, 2015, 29(10):4437-4443.
[12] LIANG J, BI S S. Design and experimental study of an end effector for robotic drilling[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50(1-4):399-407.
[13] BU Y, LIAO W H, TIAN W, et al. Modeling and experimental investigation of Cartesian compliance characterization for drilling robot[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12):3253-3264.
[14] YU Y, WANG R Q, WANG Y P, et al. Contact force controlled robotic polishing for complex PMMA parts with an active end-effector[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(4):2021012.
[15] TAN K, SHI H, YUE Y, et al. Magnetorheological fluid based force feedback performance for main manipulator of invasive surgical robot[J]. Journal of Advanced Manufacturing Science and Technology, 2022, 2(2):2022007.
[16] DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE (ONe-sided cell end effector) robotic drilling system[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale:SAE International, 2002:1-5.
[17] DEVLIEG R. Expanding the use of robotics in airframe assembly via accurate robot technology[J]. SAE International Journal of Aerospace, 2010, 3(1):198-203.
[18] WHINNEM E, LIPCZYNSKI G, ERIKSSON I. Development of orbital drilling for theBoeing 787[J]. SAE International Journal of Aerospace, 2008, 1(1):811-816.
[19] BRINKSMEIER E, FANGMANN S, MEYER I. Erratum to:orbital drilling kinematics[J]. Production Engineering, 2010, 4(2-3):307.
[20] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese).
[21] LIU H, ZHU W D, DONG H Y, et al. A helical milling and oval countersinking end-effector for aircraft assembly[J]. Mechatronics, 2017, 46:101-114.
[22] WANG W, TIAN W, LIAO W H, et al. Error compensation of industrial robot based on deep belief network and error similarity[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73:102220.
[23] 沙智华, 刘禹峰, 吴頔, 等. 螺旋铣孔末端执行器设计及其运动仿真分析[J]. 机床与液压, 2018, 46(13):84-87. SHA Z H, LIU Y F, WU D, et al. Design of helical milling hole-machining end effector and motion simulation analysis[J]. Machine Tool & Hydraulics, 2018, 46(13):84-87(in Chinese).
[24] 杨浩然. 基于机器人系统的自动钻铆末端执行器设计[D]. 沈阳:沈阳航空航天大学, 2019:10-15. YANG H R. Design of automatic drilling and riveting end actuator based on robot system[D]. Shenyang:Shenyang Aerospace University, 2019:10-15(in Chinese).
[25] 金洁,田威,李波. 一种自动钻铆末端执行器的设计[J]. 中国机械工程, 2020, 31(13):1555-1561. JIN J, TIAN W, LI B. Design of an automatic drilling-riveting end-effector[J]. China Mechanical Engineering, 2020, 31(13):1555-1561(in Chinese).
[26] GRAY T, ORF D, ADAMS G. Mobile automated robotic drilling, inspection, and fastening[C]//SAE Technical Paper Series. Warrendale:SAE International, 2013:1-7.
[27] ADAMS G. Next generation mobile robotic drilling and fastening systems[C]//SAE Technical Paper Series. Warrendale:SAE International, 2014:1-5.
[28] ALICI G, SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory, 2005, 40(8):879-906.
[29] JANG J H, KIM S H, KWAK Y K. Calibration of geometric and non-geometric errors of an industrial robot[J].Robotica, 2001, 19(3):311-321.
[30] ZHAO G, ZHANG P F, MA G C, et al. System identification of the nonlinear residual errors of an industrial robot using massive measurements[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59:104-114.
[31] WANG D L, BAI Y, ZHAO J Y. Robot manipulator calibration using neural network and a camera-based measurement system[J]. Transactions of the Institute of Measurement and Control, 2012, 34(1):105-121.
[32] PERVAIZ S, KANNAN S, HUO D H, et al. Ecofriendly inclined drilling of carbon fiber-reinforced polymers (CFRP)[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(7-8):2127-2153.
[33] OCHOA H, CORTESÃO R. Impedance control architecture for robotic-assisted micro-drilling tasks[J]. Journal of Manufacturing Processes, 2021, 67:356-363.
[34] TIAN W,MEI D Q, LI P C, et al. Determination of optimal samples for robot calibration based on error similarity[J]. Chinese Journal of Aeronautics, 2015, 28(3):946-953.
[35] 曾远帆, 田威, 廖文和. 面向飞机自动钻铆系统的工业机器人精度补偿技术[J]. 航空制造技术, 2016, 59(18):46-52. ZENG Y F, TIAN W, LIAO W H. Industrial robot error compensation methods for aircraft automatic drilling and riveting system[J]. Aeronautical Manufacturing Technology, 2016, 59(18):46-52(in Chinese).
[36] 吴朋. 轻型自主移动机器人制孔系统任务规划与自适应控制技术[D]. 南京:南京航空航天大学, 2017:3-6. WU P. Task planning and adaptive control technology for lightweight autonomous mobile robot drilling system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:3-6(in Chinese).
[37] 肖亮. 双机器人协同自动钻铆控制方法与应用[D]. 南京:南京航空航天大学, 2019:8-13. XIAO L. Dual robot cooperative automatic drilling and riveting control method and application[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:8-13(in Chinese).
[38] 程思渺, 田威, 李波, 等. 一种优化相关性模型的机器人精度补偿方法[J]. 航空制造技术, 2021, 64(21):77-83. CHENG S M, TIAN W, LI B, et al. An accuracy compensation method for industrial robot based on optimized correlation model[J]. Aeronautical Manufacturing Technology, 2021, 64(21):77-83(in Chinese).
[39] 王一军. 基于工业机器人的飞机壁板高速精确制孔系统研究[D]. 杭州:浙江大学, 2012:11-15. WANG Y J. Study on high-speed accurate drilling system of aircraft panels[D]. Hangzhou:Zhejiang University, 2012:11-15(in Chinese).
[40] 陶永, 刘刚, 唐文忠, 等. 面向飞机柔性装配的航空制孔实验平台[J]. 科技资讯, 2013, 11(22):3-6. TAO Y, LIU G, TANG W Z, et al. The design and implement of aeronautical drilling experimental platform based on flexible track[J]. Science & Technology Information, 2013, 11(22):3-6(in Chinese).
[41] 陈友东, 晏亮, 谷平平. 双机器人系统的碰撞检测算法[J]. 北京航空航天大学学报, 2013, 39(12):1644-1648. CHEN Y D, YAN L, GU P P. Detection collision algorithm for two-manipulator system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1644-1648(in Chinese).
[42] SHEN N Y, GUO Z M, LI J, et al. A practical method of improving hole position accuracy in the robotic drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5-8):2973-2987.
[43] 沈孝栋. 制孔机器人在钻削力作用下变形与振动的研究[D]. 南京:南京航空航天大学, 2015:16-20. SHEN X D. The deformation and vibration simulations of drilling robot when suffering drilling forces[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:16-20(in Chinese).
[44] DONG S, ZHENG K, LIAO W H. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145:346-352.
[45] 方强, 李超, 费少华, 等. 机器人镗孔加工系统稳定性分析[J]. 航空学报, 2016, 37(2):727-737. FANG Q, LI C, FEI S H, et al. Stability analysis of robot boring system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):727-737(in Chinese).
[46] VON DRIGALSKI F, HAFI L E, ELJURI P M U, et al. Vibration-reducing end effector for automation of drilling tasks in aircraft manufacturing[J]. IEEE Robotics and Automation Letters, 2017, 2(4):2316-2321.
[47] TAO J F, QIN C J, LIU C L. Asynchroextracting-based method for early chatter identification of robotic drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4):273-285.
[48] TAO J F, QIN C J, XIAO D Y, et al. Timely chatter identification for robotic drilling using a local maximumsynchrosqueezing-based method[J]. Journal of Intelligent Manufacturing, 2020, 31(5):1243-1255.
[49] TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(12):2755-2764.
[50] 董辉跃, 吴杨宝, 郭英杰, 等. 机器人精镗飞机交点孔的颤振分析与识别[J]. 浙江大学学报(工学版), 2018, 52(8):1517-1525. DONG H Y, WU Y B, GUO Y J, et al. Chatter analysis and identification in robotic fine boring of aircraft intersection holes[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(8):1517-1525(in Chinese).
[51] TIAN W,ZHOU Z F, LIAO W H. Analysis and investigation of a rivet feeding tube in an aircraft automatic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2015, 82(5-8):973-983.
[52] DONG S, LIAO W H, ZHENG K, et al. Investigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacks[J]. International Journal of Mechanical Sciences, 2019, 151:868-876.
[53] 费少华, 方强, 孟祥磊, 等. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. 浙江大学学报(工学版), 2012, 46(7):1157-1161, 1181. FEI S H, FANG Q, MENG X L, et al. Countersink depth control of robot drilling based on pressure foot displacement compensation[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(7):1157-1161, 1181(in Chinese).
[54] LEALI F, VERGNANO A, PINI F, et al. Aworkcell calibration method for enhancing accuracy in robot machining of aerospace parts[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):47-55.
[55] GAO Y H, WU D, DONG Y F, et al. The method of aiming towards the normal direction for robotic drilling[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(6):787-794.
[56] ZHU W D, QU W W, CAO L H, et al. An off-line programming system for robotic drilling in aerospace manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2535-2545.
[57] 唐越, 郑金辉, 张冒. 面向飞机装配自动制孔系统研究现状分析[J]. 世界制造技术与装备市场, 2020, 169(4):73-76. TANG Y, ZHENG J H, ZHANG M. Analysis on the present situation of automatic hole making system for aircraft assembly[J]. World Manufacturing Engineering & Market, 2020, 169(4):73-76(in Chinese).
[58] EGUTI C C A, TRABASSO L G. Design of a robotic orbital driller for assembling aircraft structures[J]. Mechatronics, 2014, 24(5):533-545.
[59] FROMMKNECHT A, KUEHNLE J, EFFENBERGER I, et al. Multi-sensor measurement system for robotic drilling[J]. Robotics and Computer-Integrated Manufacturing, 2017, 47:4-10.
[60] 姚艳彬, 毕树生, 员俊峰, 等. 飞机部件机器人自动制孔控制系统设计与分析[J]. 中国机械工程, 2010, 21(17):2021-2024. YAO Y B, BI S S, YUN J F, et al. Design and analyses of robot automatic drilling control system of aircraft components[J]. China Mechanical Engineering, 2010, 21(17):2021-2024(in Chinese).
[61] 布音. 工业机器人精密制孔系统刚度特性研究[D]. 南京:南京航空航天大学, 2017:120-132. BU Y. Analysis of stiffness properties for robotic precise drilling system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:120-132(in Chinese).
[62] WANG G F, DONG H Y, GUO Y J, et al. Dynamic cutting force modeling and experimental study of industrial robotic boring[J]. The International Journal of Advanced Manufacturing Technology, 2015, 86(1-4):179-190.
[63] GUO Y J, DONG H Y, WANG G F, et al. Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools and Manufacture, 2016, 101:102-110.
[64] 张杨, 高明辉, 周万勇, 等. 自动钻铆系统中工业机器人协同控制技术研究[J]. 航空制造技术, 2013, 56(20):87-90, 94. ZHANG Y, GAO M H, ZHOU W Y, et al. Research on industrial robot cooperative control technology for automatic drilling and riveting system[J]. Aeronautical Manufacturing Technology, 2013, 56(20):87-90, 94(in Chinese).
[65] SUN L F, LIANG F Y, FANG L J. Design and performance analysis of an industrial robot arm for robotic drilling process[J]. Industrial Robot:The International Journal of Robotics Research and Application, 2019, 46(1):7-16.
[66] 夏自祥, 崔祥府, 张利. 机器人小孔激光切割系统设计[J]. 制造技术与机床, 2021(10):14-17. XIA Z X, CUI X F, ZHANG L. Design of robot laser cutting system for small hole[J]. Manufacturing Technology & Machine Tool, 2021(10):14-17(in Chinese).
[67] REID E. Development of portable and flexible track positioning system for aircraft manufacturing processes[C]//SAE Technical Paper Series. Warrendale:SAE International, 2007:1-8.
[68] 陈彪, 刘华东, 卜泳, 等. 柔性导轨自动制孔设备制孔试验研究[J]. 航空制造技术, 2011, 54(22):78-80. CHEN B, LIU H D, BU Y, et al. Research on drilling experiment of flexible track automatic drilling equipment[J]. Aeronautical Manufacturing Technology, 2011, 54(22):78-80(in Chinese).
[69] 刘冬. 面向飞机制孔的爬行、定位一体化冗余驱动并联机器人研究[D]. 上海:上海交通大学, 2013:8-10. LIU D. Research on crawling-positioning integrated parallel robot with redundant actuation for drilling of aircraft component[D]. Shanghai:Shanghai Jiao Tong University, 2013:8-10(in Chinese).
[70] 冯康瑞. 基于视觉引导的机器人激光打孔系统设计研究[D]. 武汉:湖北工业大学, 2020:7-8. FENG K R. Design and research of robot laser punching system based on vision guidance[D]. Wuhan:Hubei University of Technology, 2020:7-8(in Chinese).
[71] 邹方. 飞机装配迎来机器人时代[J]. 航空制造技术, 2009, 52(24):34-37. ZOU F. Robotic era for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2009, 52(24):34-37(in Chinese).
[72] 甘露, 姚艳彬, 魏超. 爬行机器人制孔系统在飞机装配中的应用研究[J]. 航空制造技术, 2013, 56(20):80-82, 86. GAN L, YAO Y B, WEI C. Research on application of crawler robot drilling system in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2013, 56(20):80-82, 86(in Chinese).
[73] MARGUET B, CIBIEL C, DE FRANCISCO Ó, et al. Crawler robots for drilling and fastener installation:an innovative breakthrough in aerospace automation[C]//SAE Technical Paper Series. Warrendale:SAE International, 2008:1-10.
[74] 王珉, 陈文亮, 张得礼, 等. 飞机轻型自动化制孔系统及关键技术[J]. 航空制造技术, 2012, 55(19):40-43. WANG M, CHEN W L, ZHANG D L, et al. Light-weight automatic drilling system and key technology for aircraft[J]. Aeronautical Manufacturing Technology, 2012, 55(19):40-43(in Chinese).
[75] 韩锋. 面向飞机装配的轻型自主爬行钻铆系统[D]. 南京:南京航空航天大学,2015:11-14. HAN F. Lightweight auto-crawling drilling & riveting system for aircraft assembly[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:11-14(in Chinese).
文章导航

/