流体力学与飞行力学

基于流固耦合的激波/边界层干扰作用下壁板颤振特性

  • 刘为佳 ,
  • 李映坤 ,
  • 陈雄 ,
  • 李春雷
展开
  • 南京理工大学 机械工程学院,南京  210094

收稿日期: 2022-03-01

  修回日期: 2022-03-21

  录用日期: 2022-04-06

  网络出版日期: 2022-04-12

基金资助

国家自然科学基金(52006099);中央高校基本科研业务费专项资金(30920021102)

Panel flutter characteristics on shock wave/boundary layer interaction based on fluid⁃structure coupling

  • Weijia LIU ,
  • Yingkun LI ,
  • Xiong CHEN ,
  • Chunlei LI
Expand
  • School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing  210094,China

Received date: 2022-03-01

  Revised date: 2022-03-21

  Accepted date: 2022-04-06

  Online published: 2022-04-12

Supported by

National Natural Science Foundation of China(52006099);the Fundamental Research Funds for the Central Universities(30920021102)

摘要

为了解激波/边界层干扰作用下壁板气动弹性及其对流动分离的影响,采用自主开发的双向流固耦合求解器,对不同激波冲击位置下壁板的振动响应和流动特性进行了数值模拟研究。壁板几何非线性运动方程采用有限差分法求解,基于有限体积法求解Navier-Stokes方程组,对流通量采用MUSCL和AUSMPW+格式离散,双向流固耦合采用交错迭代算法。研究结果表明:激波/边界层干扰作用下壁板振动位移先增大后减小,经若干振荡周期后达到稳定颤振状态,呈现二阶振动模态,壁板变形相对于激波冲击位置呈现非对称性,壁板前部分的振幅始终小于壁板后部分;激波冲击位置可显著改变壁板的颤振振幅、频率及分离区长度,当激波冲击位置靠近壁板两端时,壁板振动最终收敛达到静稳定状态;壁板振动响应与流场特征不随激波冲击位置的改变而单调变化,对于激波冲击位置xi/a=0.35工况,壁板颤振可有效抑制激波/边界层干扰流动分离。

本文引用格式

刘为佳 , 李映坤 , 陈雄 , 李春雷 . 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023 , 44(6) : 127085 -127085 . DOI: 10.7527/S1000-6893.2022.27085

Abstract

To analyze the aeroelastic stability of the flexible panel in shock wave/boundary layer interaction and its influence on flow separation,a developed fluid-structure coupling solver is used to numerically simulate the vibration response and flow characteristics of the flexible panel at different shock impingement locations. The geometrically nonlinear equations of the flexible panel are solved by the finite difference method,Navier-Stokes equations based on the finite volume method,and MUSCL and AUSMPW+ schemes are used for the discretization of convective flux. The conventional serial staggered algorithm is adopted for the fluid-structure interaction. The results exhibit that the vibration displacement of the panel increases first and then decreases,and reaches a stable flutter state after several oscillation cycles,with a second-order vibration mode. The deformation of the panel is asymmetric relative to the shock impingement location. The amplitude of the front part of the panel is always smaller than that of the rear part of the panel. The shock position can significantly change the flutter amplitude,frequency,and separation zone length of the panel. When the shock impingement location is close to both ends of the panel,the vibration of the panel finally converges with the change of the shock impact position. For shock impingement location xi /a=0.35,the panel flutter can effectively suppress flow separation in shock wave/boundary layer interaction.

参考文献

1 YANG X D, YU T J, ZHANG W, et al. Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer[J]. Composite Structures2016137: 105-113.
2 DOWELL E H. Panel flutter-a review of the aeroelastic stability of plates and shells[J]. AIAA Journal19708(3): 385-399.
3 DOWELL E H, HALL K C. Modeling of fluid-structure interaction[J]. Annual Review of Fluid Mechanics200133: 445-490.
4 MEI C, ABDEL-MOTAGALY K, CHEN R. Review of nonlinear panel flutter at supersonic and hypersonic speeds[J]. Applied Mechanics Reviews199952(10): 321-332.
5 杨智春, 夏巍. 壁板颤振的分析模型、 数值求解方法和研究进展[J]. 力学进展201040(1): 81-98.
  YANG Z C, XIA W. Analytical models,numerical solutions and advances in the study of panel flutter[J]. Advances in Mechanics201040(1): 81-98 (in Chinese).
6 SOUVEREIN L J, DUPONT P, DEBIèVE J F,et al. Effect of interaction strength on unsteadiness in shock-wave-induced separations[J]. AIAA Journal201048(7):1480-1493.
7 王博. 激波/湍流边界层相互作用流场组织结构研究[D]. 长沙: 国防科技大学, 2015.
  WANG B. The investigation into the shock wave/boundary-layer interaction flow field organization[D]. Changsha: National University of Defense Technology,2015 (in Chinese).
8 时晓天, 吕蒙, 赵渊, 等. 激波/湍流边界层干扰的流动控制技术综述[J]. 航空学报202243(1): 625929.
  SHI X T, LYU M, ZHAO Y, et al. Flow control technique for shock wave/turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica202243(1): 625929 (in Chinese).
9 HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica2020174: 103-122.
10 CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics201446(1): 469-492.
11 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报201749(1): 93-104.
  TONG F L, LI X L, TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics201749(1): 93-104 (in Chinese).
12 BRUCE P, BABINSKY H. Behaviour of unsteady transonic shock/boundary layer interactions with three-dimensional effects[C]∥ 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
13 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰分离泡直接数值模拟[J]. 航空学报202243(7): 125437.
  TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica202243(7): 125437 (in Chinese).
14 DAUB D, WILLEMS S, GüLHAN A. Experiments on the interaction of a fast-moving shock with an elastic panel[J]. AIAA Journal201654(2): 670-678.
15 VARIGONDA S V, NARAYANASWAMY V. Investigation of shock wave oscillations over a flexible panel in supersonic flows[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
16 TRIPATHI A, MEARS L, SHOELE K,et al. Oblique shockwave boundary layer interactions on a flexible panel at Mach 2[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
17 TRIPATHI A, GUSTAVSSON J, SHOELE K,et al. Effect of shock impingement location on the fluid-structure interaction over a compliant panel[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022.
18 SPOTTSWOOD S M, BEBERNISS T J, EASON T G,et al. Exploring the response of a thin,flexible panel to shock-turbulent boundary-layer interactions[J]. Journal of Sound and Vibration2019443: 74-89.
19 TAN S S, BRUCE P J, GRAMOLA M. Oblique shockwave boundary layer interaction on a flexible surface[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
20 VISBAL M R. On the interaction of an oblique shock with a flexible panel[J]. Journal of Fluids and Structures201230: 219-225.
21 VISBAL M R. Viscous and inviscid interactions of an oblique shock with a flexible panel[J]. Journal of Fluids and Structures201448: 27-45.
22 BOYER N R, MCNAMARA J J, GAITONDE D V,et al. Features of shock-induced panel flutter in three-dimensional inviscid flow[J]. Journal of Fluids and Structures201883: 490-506.
23 BOYER N R, MCNAMARA J J, GAITONDE D V,et al. Features of panel flutter response to shock boundary layer interactions[J]. Journal of Fluids and Structures2021101: 103207.
24 SHINDE V, MCNAMARA J, GAITONDE D,et al. Transitional shock wave boundary layer interaction over a flexible panel[J]. Journal of Fluids and Structures201990: 263-285.
25 SHINDE V J, GAITONDE D V, MCNAMARA J J. Supersonic turbulent boundary-layer separation control using a morphing surface[J]. AIAA Journal202159(3): 912-926.
26 BHATIA M, BERAN P. Influence of aerodynamic nonlinearity due to static panel-curvature on flutter of panels at transonic and low supersonic Mach numbers[J]. Journal of Fluids and Structures201881: 574-597.
27 WHALEN T J, SCH?NEICH A G, LAURENCE S J,et al. Hypersonic fluid-structure interactions in compression corner shock-wave/boundary-layer interaction[J]. AIAA Journal202058(9): 4090-4105.
28 LI Y, LUO H, CHEN X, et al. Laminar boundary layer separation over a fluttering panel induced by an oblique shock wave[J]. Journal of Fluids and Structures201990: 90-109.
29 AN X, DENG B, FENG J,et al. Analysis of nonlinear aeroelastic response of curved panels under shock impingements[J]. Journal of Fluids and Structures2021107: 103404.
30 李映坤, 陈雄, 许进升. 基于流固耦合的斜激波冲击作用下曲壁板气动弹性分析[J]. 航空动力学报202035(4):783-792.
  LI Y K, CHEN X, XU J S. Aeroelastic analysis of curved panels subjected to impinging oblique shock based on fluid-structure coupling algorithm[J]. Journal of Aerospace Power202035(4): 783-792 (in Chinese).
31 WANG G, ZHOU H, MIAN H H. Numerical analysis on modal stability characteristics of 2D panel flutter at low supersonic speeds[J]. Journal of Fluids and Structures2021103: 103296.
32 李映坤, 韩珺礼, 陈雄, 等. 基于多物理场耦合的双脉冲发动机点火过程数值模拟[J]. 航空学报201738(4):120409.
  LI Y K, HAN J L, CHEN X, et al. Numerical simulation of the ignition transient of dual pulse motor based on multi-physics coupling[J]. Acta Aeronautica et Astronautica Sinica201738(4): 120409 (in Chinese).
33 KIM K H, KIM C, RHO O. Methods for the accurate computations of hypersonic flows[J]. Journal of Computational Physics2001174(1): 38-80.
34 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006.
  YAN C. Computational fluid mechanics method and its application[M]. Beijing:Beihang University Press, 2006 (in Chinese).
35 CONNELL B S H, YUE D K P. Flapping dynamics of a flag in a uniform stream[J]. Journal of Fluid Mechanics2007581: 33-67.
36 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 北京:高等教育出版社, 2012.
  TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. Beijing: Higher Education Press, 2012 (in Chinese).
文章导航

/