临近空间高速飞行器微量气动力试验及计算
收稿日期: 2022-02-24
修回日期: 2022-03-09
录用日期: 2022-03-25
网络出版日期: 2022-04-06
基金资助
国家自然科学基金(11902313)
Microaerodynamic experiment and computation of near space high speed vehicles
Received date: 2022-02-24
Revised date: 2022-03-09
Accepted date: 2022-03-25
Online published: 2022-04-06
Supported by
National Natural Science Foundation of China(11902313)
针对临近空间大气环境微量气动力风洞试验准确测量需求,研制了微量天平测力系统,实现了微量天平的结构设计和静态校准。采用钝锥简单外形进行试验验证,并对三角翼升力体复杂外形做了探索,结果表明:钝锥外形验证试验中,3次试验时天平各载荷单元的气动数据重复性精度均优于4.8%;探索试验中,三角翼升力体外形采用该风洞目前能达到最低密度状态,试验结果表明:该微量测力天平在极限状态下表现较好。在此基础上,利用数值计算方法对上述外形进行模拟,并将模拟结果与试验结果进行对比,表明数值计算得到的钝锥和三角翼升力体的气动力均与微量天平测力结果吻合较好;对于简单钝锥外形,在其试验条件下,钝锥表面压阻远高于摩阻;对于三角翼升力体外形,其试验条件下环境大气更加稀薄,三角翼表面摩阻占比与压阻相当。
李俊红 , 靳旭红 , 刘春风 , 苗文博 , 程晓丽 . 临近空间高速飞行器微量气动力试验及计算[J]. 航空学报, 2023 , 44(6) : 127072 -127072 . DOI: 10.7527/S1000-6893.2022.27072
Structural design and static calibration were developed for accurate measurement of micro aerodynamic wind tunnel tests in near space atmospheric environments. Then,the simple blunt cone model was used for the micro-aerodynamic force experiment verification,and the complex shape of the triangular lift body was adopted to explore the ability to measure the micro-aerodynamic force in thinner atmospheric environments. The results show that the repeatability accuracy of aerodynamic data of each balance load unit is better than 4.8% in the three times of the blunt cone shape verification test. In the exploration test,the triangular lift body adopts the lowest density state the wind tunnel can currently achieve,and the test results show that the micro-force balance performs well in the limit state. The numerical simulation results,compared with the experimental results,show that the aerodynamic forces of the blunt cone and the delta wing lift body are in good agreement with those measured by microbalance; for the simple blunt cone,the compressive resistance of the blunt surface is significantly higher than the frictional resistance under its test conditions,while the surface friction ratio of the complex delta wing body is equal to the piezoresistive,with much thinner test conditions.
Key words: near space; wind tunnel test; microbalance; aerodynamic force; high speed vehicles
1 | 于登云. 新型航天器发展对力学学科的挑战[J]. 科学通报, 2015, 60(12): 1085-1094. |
YU D Y. Mechanical challenges in advanced spacecraft development[J]. Chinese Science Bulletin, 2015, 60(12): 1085-1094 (in Chinese). | |
2 | FREEMAN J D C, REUBUSH D E, MCCLINTON C R,et al. The NASA hyper-X program: NASA TM-1997-207243[R]. Washington, D. C.: NASA, 1997. |
3 | MORELLI E A, DERRY S D, SMITH M S. Aerodynamic parameter estimation for the X-43A(hyper-X)from flight data[C]∥ AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005. |
4 | MARSHALL L A, BAHM C, CORPENING G P, et al. Overview with results and lessons learned of the X-43a Mach 10 flight[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Comference. Reston: AIAA, 2005. |
5 | 马汉东. 高超声速技术项目“Hyper-X”气动研究方法学[J]. 力学与实践, 2014, 36(3): 261-268, 277. |
MA H D. Methodology of aerodynamic research for hypersonic technical project“Hyper-X”[J]. Mechanics in Engineering, 2014, 36(3): 261-268, 277 (in Chinese). | |
6 | BERRY S, DARYABEIGI K, WURSTER K, et al. Boundary layer transition on X-43A[C]∥ 38th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2008. |
7 | HANK J M. Air force research laboratory hypersonic propulsion research programs[C]∥ 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007. |
8 | CANDLER G, JOHNSON H, ALBA C, et al. Analysis of modal growth on the leeward center plane of the X-51 vehicle: FRL-RB-WP-TM-2010-3001A[R]. Minnesota: University of Minnesota, 2010. |
9 | 李建林. 临近空间高超声速飞行器发展研究[M]. 北京:中国宇航出版社, 2012. |
LI J L. Development survey of near space hypersonic vehicles[M]. Beijing: China Astronautic Publishing House, 2012 (in Chinese). | |
10 | WALKER S, SHERK J, SHELL D, et al. The DARPA/AF falcon program:the hypersonic technology vehicle #2 (HTV-2)flight demonstration phase[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
11 | WALKER S H, RODGERS F. Falcon hypersonic technology overview[C]∥ 13th AIAA/CIRA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2005. |
12 | 聂万胜, 罗世彬, 丰松江, 等. 近空间飞行器关键技术及其发展趋势分析[J]. 国防科技大学学报, 2011, 34(2):107-113. |
NIE W S, LUO S B, FENG S J,et al. Analysis of key technologies and development trend of near space vehicle[J]. Journal of National University of Defense Technology, 2011, 34(2): 107-113 (in Chinese). | |
13 | 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8): 623686. |
CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623686 (in Chinese). | |
14 | 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1): 7-23. |
YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 7-23 (in Chinese). | |
15 | 叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报, 2018, 50(6):1292-1310. |
YE Y D, ZHANG H X, JIANG Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1292-1310 (in Chinese). | |
16 | 李廷伟, 张莽, 赵文文, 等. 面向稀薄流非线性本构预测的机器学习方法[J]. 航空学报, 2021, 42(4): 524386. |
LI T W, ZHANG M, ZHAO W W, et al. Machine learning method for correction of rarefied nonlinear constitutive relations[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524386 (in Chinese). | |
17 | 程晓丽, 苗文博, 黄飞, 等. 跨流域多物理效应新型实验与预测技术[R]. 北京: 中国航天空气动力技术研究院, 2021. |
CHENG X L, MIAO W B, HUANG F, et al. New experiment and computation technology for multi-physical effects in multiple flow regime[R]. Beijing: China Academy of Aerospace Aerodynamics, 2021 (in Chinese). | |
18 | 靳旭红, 黄飞, 程晓丽, 等. Maxwell气固相互作用模型对稀薄高超声速凹腔绕流流动特征和热环境的影响[J]. 航空学报, 2021, 42(3): 124118. |
JIN X H, HUANG F, CHENG X L, et al. Effect of Maxwell gas surface interaction models on flow characteristics and thermodynamic properties of rarefied hypersonic cavity flows[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124118 (in Chinese). | |
19 | JIN X H, HUANG F, CHENG X L, et al. Monte Carlo simulation for aerodynamic coefficients of satellites in low-Earth orbit[J]. Acta Astronautica, 2019, 160(1): 222-229. |
20 | 刘春风, 刘家骅. 微量天平测力技术[R]. 北京: 中国航天空气动力技术研究院, 2021. |
LIU C F, LIU J H. Microbalance force measurement technology[R]. Beijing: China Academy of Aerospace Aerodynamics, 2021 (in Chinese). | |
21 | 孙勇堂, 赵之平, 石运军, 等. CAAA新建Φ1.2米常规高超声速风洞[C]∥ 中国力学大会,2017. |
SUN Y T, ZHAO Z P, SHI Y J, et al. New-built 1.2 diameter conventional hypersonic wind tunnel[C]∥ Chinese Mechanics Conference, 2017. | |
22 | 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006. |
YAN C. Computational fluid mechanics and methods[M]. Beijing: Beihang University Press, 2006 (in Chinese). | |
23 | 苗文博, 罗晓光, 程晓丽, 等. 壁面催化对高超声速飞行器气动特性影响[J]. 空气动力学学报, 2014, 32(2): 235-239. |
MIAO W B, LUO X G, CHENG X L, et al. Surface recombination effects on aerodynamic loads of hypersonic vehicles [J]. Acta Aerodynamica Sinica, 2014, 32(2):235-239 (in Chinese). | |
24 | LIOU M S. A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds[C]∥ 16th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2003. |
/
〈 |
|
〉 |