论文

典型金属民机机身结构坠撞特性试验

  • 张欣玥 ,
  • 惠旭龙 ,
  • 刘小川 ,
  • 白春玉
展开
  • 1. 中国飞机强度研究所, 西安 710065;
    2. 结构冲击动力学航空科技重点实验室, 西安 710065;
    3. 陕西省飞行器振动冲击与噪声重点实验室, 西安 710065

收稿日期: 2021-08-16

  修回日期: 2022-04-08

  网络出版日期: 2022-04-06

基金资助

民机专项科研项目(MJ-2017-F-15)

Experimental study on crash characteristics of typical metal civil aircraft fuselage structure

  • ZHANG Xinyue ,
  • XI Xulong ,
  • LIU Xiaochuan ,
  • BAI Chunyu
Expand
  • 1. Aircraft Strength Research Institute of China, Xi'an 710065, China;
    2. Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, Xi'an 710065, China;
    3. Shaanxi Province Key Laboratory of Aircraft Vibration, Impact and Noise, Xi'an 710065, China

Received date: 2021-08-16

  Revised date: 2022-04-08

  Online published: 2022-04-06

Supported by

Specialized Research Project of Civil Aircraft (MJ-2017-F-15)

摘要

为验证典型金属飞机机身结构的适坠性,开展了机身等直段结构在5.91 m/s下的垂直坠撞试验,得到了地面撞击载荷、机身结构变形及机身结构典型位置和假人的动态响应数据,分析了坠撞过程中机身结构的变形失效机理、载荷传递规律及能量吸收特性,提出了提高机身结构适坠性的设计方法。试验研究表明,在坠撞冲击载荷作用下,客舱地板横梁以下结构出现较为严重的变形,机身结构呈现非对称的破坏模式。在坠撞过程中,由于机身框和横梁变形吸收了大部分冲击能量,因此,相较于立柱处加速度峰值,传递至乘员处加速度峰值减小了90%左右。由综合适坠性评估指数可知,机身结构在5.91 m/s的坠撞速度下,具有良好的适坠性。

本文引用格式

张欣玥 , 惠旭龙 , 刘小川 , 白春玉 . 典型金属民机机身结构坠撞特性试验[J]. 航空学报, 2022 , 43(6) : 526234 -526234 . DOI: 10.7527/S1000-6893.2022.26234

Abstract

To verify the crashworthiness of typical metal aircraft fuselage structure, this paper has carried out the fuselage straight segment structure vertical crash test under the velocity of 5.91 m/s. Ground impact load, fuselage deformation, acceleration response of typical positions at fuselage, and dummy response are obtained. The fuselage structure failure mechanism, the regularity of load transfer and the energy absorption characteristics during the crash are analyzed. The crashworthiness design methods of the fuselage are put forward. The experimental study shows that under the impact load the structure of the cabin floor under the beam appears serious deformation and damage, and the fuselage presents a non-symmetrical failure mode. During the impact,the fuselage structure absorbs most of the impact energy through the deformation and fracture of the columns,the deformation and fracture of the frames and the deformation of the beams. Therefore, compared with the peak acceleration at the column, the peak acceleration at the occupant decreases by about 90%. It can be known from the integrated crashworthiness index that the fuselage structure has good crashworthiness at the crash velocity of 5.91 m/s.

参考文献

[1] LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics, 2015, 28(2):447-456.
[2] SIROMANI D. Crashworthy design and analysis of aircraft structures[D]. Philadelphia:Drexel University, 2013.
[3] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9):2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2130-2140(in Chinese).
[4] 刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战[J]. 固体力学学报, 2020, 41(4):293-323. LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures[J]. Chinese Journal of Solid Mechanics, 2020, 41(4):293-323(in Chinese).
[5] 刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12):2202-2210. LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2202-2210(in Chinese).
[6] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98:106-123.
[7] MOSTAFA R. Virtual test & simulation[C]//Engineering, Operations & Technology, 2013:1-24.
[8] PERFETTO D, DE LUCA A, LAMANNA G, et al. Drop test simulation and validation of a full composite fuselage section of a regional aircraft[J]. Procedia Structural Integrity, 2018, 12:380-391.
[9] DI PALMA L, DI CAPRIO F, CHIARIELLO A, et al. Vertical drop test of composite fuselage section of a regional aircraft[J]. AIAA Journal, 2020, 58(1):474-487.
[10] HASHEMI S R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2000, 214(5):265-280.
[11] WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft-comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2):193-218.
[12] FASANELLA E L, ALFARO-BOU E. Vertical drop test of a transport fuselage section located aft of the wing:NASA TM-89025[R]. Washington,D.C.:NASA, 1986.
[13] WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage center section including the wheel wells:NASA TM-85706[R]. Washington,D.C.:NASA, 1983.
[14] FASANELL E L, JACKSON K E, JONES Y T, et al. Crash simulation of a Boeing 737 fuselage section vertical drop test[C]//Proceedings of the Third KRASH User's Conference, 2001.
[15] FASANELL E L, JACKSON K E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank:23681-0001[R]. U.S. Army Research Laboratory, Vehicle Technology Center, Langley Research Center, 2002.
[16] KAREN E J, EDWIN L F. Crash simulation of a vertical drop test of a B737 fuselage section with overhead bins and luggage[C]//Proceedings of the Third Triennial Aircraft Fire and Cabin Safety Conference, 2001:22-25.
[17] ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of a narrow-body transport fuselage section with overhead stowage bins[R]. Warrendale:SAE International, 2002.
[18] JACKSON K E. Finite element simulations of two vertical drop tests of F-28 Fuselage sections:NASA/TM-2018-219807[R].Washington,D.C.:NASA, 2018.
[19] JACKSON K E, FASANELLA E L. Development of an LS-DYNA model of an ATR42-300 aircraft for crash simulation[C]//2003 SAE World Aviation Congress, 2003.
[20] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[R].Warrendale:SAE International, 2003.
[21] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Vertical drop test of a transport fuselage section[R].Warrendale:SAE International, 2002.
[22] REN Y R, XIANG J W, MENG S H, et al. Crashworthiness of civil aircraft subject to soft soil and concrete impact surface[J]. Procedia Engineering, 2014, 80:193-201.
[23] 任毅如, 向锦武, 郑建强, 等. 典型民机机身段水上冲击数值模拟方法及其耐撞性研究[J]. 工程力学, 2016, 33(5):241-248. REN Y R, XIANG J W, ZHENG J Q, et al. Research on the numerical method and crashworthiness of typical civil aircraft fuselage for water impact[J]. Engineering Mechanics, 2016, 33(5):241-248(in Chinese).
[24] 冯振宇, 张晓敏, 牟浩蕾, 等. 不同冲击条件对机身结构适坠性的影响[J]. 机械科学与技术, 2013, 32(3):353-357. FENG Z Y, ZHANG X M, MOU H L, et al. Influences of different impact conditions on aircraft fuselage crashworthiness[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(3):353-357(in Chinese).
[25] 彭亮. 基于乘员生存性的机身结构适坠性设计与评价方法研究[D]. 西安:西北工业大学, 2018. PENG L. Research on design and evaluation method of airframe structural crashworthiness based on occupants survivability[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese).
[26] 中国民用航空规章:第25部-运输类飞机适航标准:CCAR-25[S]. 北京:中国民用航空局, 2011. China Civil Aviation Regulation:25-airworthiness standard of transport aircraft:CCAR-25[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese).
[27] 白春玉, 刘小川, 惠旭龙, 等. 民机适坠性研究中的垂向坠撞速度问题探讨[J]. 航空科学技术, 2020, 31(9):11-17. BAI C Y, LIU X C, XI X L, et al. Discussion on the problem of vertical crash velocity in the study of the crashworthiness of civil aircraft[J]. Aeronautical Science & Technology, 2020, 31(9):11-17(in Chinese).
[28] Society of Automotive Engineers. Recommended practice:Instrumentation for impact test-Part 1, Electronic instrumentation:SAE J211/1[S]. Warrendale:SAE International,2007.
文章导航

/