[1] 史晋蕾, 姚丽瑞. 航空复合材料技术[M]. 北京:航空工业出版社, 2011. SHI J L, YAO L R. Aeronautical composite technology[M].Beijing:Aviation Industry Press,2011(in Chinese).
[2] 赵振宁, 王辉, 虎琳. 航空航天先进复合材料研究现状及发展趋势[J]. 炭素, 2021(2):24-29. ZHAO Z N, WANG H, HU L. The research status and development trend of aerospace advanced composites[J]. Carbon, 2021(2):24-29(in Chinese).
[3] SOUTIS C, IRVING P. Polymer composites in the aerospace industry[M]. Amsterdam:Elsevier, 2014.
[4] 宋清华, 肖军, 文立伟, 等. 玻璃纤维增强热塑性塑料在航空航天领域中的应用[J]. 玻璃纤维, 2012(6):40-43. SONG Q H, XIAO J, WEN L W, et al. Applications of glass fiber reinforced thermoplastics in aerospace sector[J]. Fiber Glass, 2012(6):40-43(in Chinese).
[5] 郝建伟. 对我国航空复合材料发展的思考[C]//航空复合材料预研二十年回顾展望研讨会. 北京:中国航空学会, 2001. HAO J W. Thinking about the development of aviation composite materials in China[C]//Seminar on Review and Prospect of 20 years of Aeronautical Composite Peresearch.Beijing:Chinese Society of Aeronautics and Astronautics,2001(in Chinese).
[6] ZAGAINOV G I, LOZINO-LOZINSKY G E. Composite materials in aerospace design[M]. Dordrecht:Springer Netherlands, 1996.
[7] PANG H F, DUAN Y P, HUANG L X, et al. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Composites Part B:Engineering, 2021, 224:109173.
[8] ZHANG Y X, ZHU Z, JOSEPH R, et al. Damage to aircraft composite structures caused by directed energy system:A literature review[J]. Defence Technology, 2021, 17(4):1269-1288.
[9] LEE J, NI X C, DASO F, et al. Advanced carbon fiber composite out-of-autoclave laminate manufacture via nanostructured out-of-oven conductive curing[J]. Composites Science and Technology, 2018, 166:150-159.
[10] 雷红帅, 赵则昂, 郭晓岗, 等. 航天器轻量化多功能结构设计与制造技术研究进展[J]. 宇航材料工艺, 2021, 51(4):10-22. LEI H S, ZHAO Z A, GUO X G, et al. Research progress on the design and manufacture technology of lightweight multifunctional spacecraft structures[J]. Aerospace Materials & Technology, 2021, 51(4):10-22(in Chinese).
[11] 王德堂, 冯军. 大型飞机复合材料主结构的设计与发展[J]. 航空制造技术, 2011, 54(13):68-70. WANG D T, FENG J. CFRP airframe's design and developing for large commercial aircraft[J]. Aeronautical Manufacturing Technology, 2011, 54(13):68-70(in Chinese).
[12] 中国航空研究院. 复合材料结构设计手册[M]. 北京:航空工业出版社, 2001. Chinese Aeronautical Establishment. Handbook of composite structure design[M]. Beijing:Aviation Industry Press, 2001(in Chinese).
[13] 岳珠峰, 王富生, 王佩艳. 飞机复合材料结构分析与优化设计[M]. 北京:科学出版社, 2011. YUE Z F, WANG F S, WANG P Y. Structural analysis and optimization design of aircraft composite materials[M]. Beijing:Science Press, 2011(in Chinese).
[14] 张赋. 复合材料微结构仿真与性能预测一体化研究[D]. 兰州:兰州理工大学, 2013. ZHANG F. Research on the integration of microstructure simulation and performance properties of composites[D]. Lanzhou:Lanzhou University of Technology, 2013(in Chinese).
[15] 冯雁, 郑锡涛, 吴淑一, 等. 轻型复合材料机翼铺层优化设计与分析[J]. 航空学报, 2015, 36(6):1858-1866. FENG Y, ZHENG X T, WU S Y, et al. Layup optimization design and analysis of super lightweight composite wing[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1858-1866(in Chinese).
[16] GHIASI H, FAYAZBAKHSH K, PASINI D, et al. Optimum stacking sequence design of composite materials Part II:Variable stiffness design[J]. Composite Structures, 2010, 93(1):1-13.
[17] RINKU A, ANANTHASURESH G. Topology and size optimization of modular ribs in aircraft wings[C]//Proceedings of 11th World Congress on Structural and Multidisciplinary Optimisation, 2015.
[18] LYU Z J, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2014, 53(4):968-985.
[19] KROG L, TUCKER A, KEMP M, et al. Topology optimisation of aircraft wing box ribs[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2004:4481.
[20] 张为华, 李晓斌. 飞行器多学科不确定性设计理论概述[J]. 宇航学报, 2004, 25(6):702-706. ZHANG W H, LI X B. Survey on the theory of aircraft multidisciplinary uncertainty design[J]. Journal of Astronautics, 2004, 25(6):702-706(in Chinese).
[21] 王晓军, 马雨嘉, 王磊, 等. 飞行器复合材料结构优化设计研究进展[J]. 中国科学:物理学力学天文学, 2018, 48(1):26-41. WANG X J, MA Y J, WANG L, et al. Advances in the optimization design study for aircraft composite structure[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(1):26-41(in Chinese).
[22] 颜芳芳. 复合材料性能的分散性与安全系数[D]. 南京:南京航空航天大学, 2009. YAN F F. Research on discrepancy of composite properties and the safety factor[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[23] 郭书祥, 吕震宙. 基于非概率模型的结构可靠性优化设计[J]. 计算力学学报, 2002, 19(2):198-201. GUO S X, LV Z Z. Optimization of uncertain structures based on non-probabilistic reliability[J]. Chinese Journal of Computational Mechanics, 2002, 19(2):198-201(in Chinese).
[24] 熊海林. 复合材料结构多尺度一体化优化设计[D]. 武汉:华中科技大学, 2016. XIONG H L. Multi scale integrated topology optimization design of composite structures[D]. Wuhan:Huazhong University of Science and Technology, 2016(in Chinese).
[25] 王悦, 吴迪, 邓云飞, 等. 基于MBD的航天航空融合空天飞行器复合材料结构协同设计制造探索[J]. 网信军民融合, 2020(7):18-21. WANG Y, WU D, DENG Y F, et al. Collaborative design and manufacturing of composite material structure for aerospace fusion spacecraft based on MBD[J]. Civil-Military Integration on Cyberspace, 2020(7):18-21(in Chinese).
[26] CHOUDHARY N, KAUR D. Vibration damping materials and their applications in nano/micro-electro-mechanical systems:A review[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(3):1907-1924.
[27] BIGGERSTAFF J M, KOSMATKA J B. Damping performance of cocured graphite/epoxy composite laminates with embedded damping materials[J]. Journal of Composite Materials, 1999, 33(15):1457-1469.
[28] KIM H C, KIM E H, LEE I, et al. Fabrication of carbon nanotubes dispersed woven carbon fiber/epoxy composites and their damping characteristics[J]. Journal of Composite Materials, 2013, 47(8):1045-1054.
[29] SHARMA S, DHAKATE S R, MAJUMDAR A, et al. Improved static and dynamic mechanical properties of multiscale bucky paper interleaved Kevlar fiber composites[J]. Carbon, 2019, 152:631-642.
[30] 熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报, 2020, 41(6):749-760. XIONG J, DU Y T, YANG W, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures[J]. Journal of Astronautics, 2020, 41(6):749-760(in Chinese).
[31] 霍世慧, 王富生, 王佩艳, 等. 复合材料机翼加筋壁板稳定性分析[J]. 应用力学学报, 2010, 27(2):423-427, 451. HUO S H, WANG F S, WANG P Y, et al. Stability analysis on the ribbed panel of the composite wing[J]. Chinese Journal of Applied Mechanics, 2010, 27(2):423-427, 451(in Chinese).
[32] 杨新华, 陈传尧. 疲劳与断裂[M]. 2版. 武汉:华中科技大学出版社, 2018. YANG X H, CHEN C Y. Fatigue and fracture[M]. 2nd ed.Wuhan:Huazhong University of Science and Technology Press, 2018(in Chinese).
[33] HANCOX N L. Thermal effects on polymer matrix composites:Part 1. Thermal cycling[J]. Materials & Design, 1998, 19(3):85-91.
[34] MOHAMMADI B, FAZLALI B, SALIMI-MAJD D. Development of a continuum damage model for fatigue life prediction of laminated composites[J]. Composites Part A:Applied Science and Manufacturing, 2017, 93:163-176.
[35] DEGRIECK AND J, VAN PAEPEGEM W. Fatigue damage modeling of fibre-reinforced composite materials:Review[J]. Applied Mechanics Reviews, 2001, 54(4):279-300.
[36] 姚辽军. 复合材料层间Ⅰ型静态及疲劳断裂机理研究[D]. 西安:西北工业大学, 2016. YAO L J. Mode Ⅰ quasi-static and fatigue delamination growth in composite laminates[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese).
[37] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):522509. ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522509(in Chinese).
[38] JONES R, KINLOCH A J, MICHOPOULOS J G, et al. Delamination growth in polymer-matrix fibre composites and the use of fracture mechanics data for material characterisation and life prediction[J]. Composite Structures, 2017, 180:316-333.
[39] MUELLER E M, STARNES S, STRICKLAND N, et al. The detection, inspection, and failure analysis of a composite wing skin defect on a tactical aircraft[J]. Composite Structures, 2016, 145:186-193.
[40] BRUNNER A J, MURPHY N, PINTER G. Development of a standardized procedure for the characterization of interlaminar delamination propagation in advanced composites under fatigue mode I loading conditions[J]. Engineering Fracture Mechanics, 2009, 76(18):2678-2689.
[41] STELZER S, BRUNNER A J, ARGVELLES A, et al. Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites:Development of a standardized test procedure[J]. Composites Science and Technology, 2012, 72(10):1102-1107.
[42] MURRI G B. Effect of data reduction and fiber-bridging on Mode I delamination characterization of unidirectional composites[J]. Journal of Composite Materials, 2014, 48(19):2413-2424.
[43] STELZER S, BRUNNER A J, ARGVELLES A, et al. Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites:Results from ESIS TC4 round-Robins[J]. Engineering Fracture Mechanics, 2014, 116:92-107.
[44] PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. Methods for the prediction of fatigue delamination growth in composites and adhesive bonds-A critical review[J]. Engineering Fracture Mechanics, 2013, 112-113:72-96.
[45] MURRI G. Evaluation of delamination onset and growth characterization methods under mode I fatigue loading[R]. Washington,D.C.:NASA, 2013.
[46] JOHNSTON W, TOLAND G. Mode II interlaminar fracture toughness and fatigue characterization of a graphite epoxy composite material:NASA/TM-2010-216838[R]. Washington,D.C.:NASA, 2010.
[47] RATCLIFFE J G, JOHNSTON W M. Influence of mixed mode I-mode II loading on fatigue delamination growth characteristics of a graphite epoxy tape laminate[C]//29th American Society for Composites Technical Conference/16th US-Japan Conference on Composite Materials, 2014.
[48] ZHANG J Y, PENG L, ZHAO L B, et al. Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading[J]. International Journal of Fatigue, 2012, 40:7-15.
[49] ZHAO L B, GONG Y, ZHANG J Y, et al. A novel interpretation of fatigue delamination growth behavior in CFRP multidirectional laminates[J]. Composites Science and Technology, 2016, 133:79-88.
[50] BAK B L V, SARRADO C, TURON A, et al. Delamination under fatigue loads in composite laminates:A review on the observed phenomenology and computational methods[J]. Applied Mechanics Reviews, 2014, 66(6):060803.
[51] HOJO M, TANAKA K, GUSTAFSON C G, et al. Effect of stress ratio on near-threshold propagation of delimination fatigue cracks in unidirectional CFRP[J]. Composites Science and Technology, 1987, 29(4):273-292.
[52] ATODARIA D R, PUTATUNDA S K, MALLICK P K. Delamination growth behavior of a fabric reinforced laminated composite under mode I fatigue[J]. Journal of Engineering Materials and Technology, 1999, 121(3):381-385.
[53] KHAN R. Delamination growth in composites under fatigue loading[D]. Delft:Delft University of Technology, 2013.
[54] BLANCO N, GAMSTEDT E K, ASP L E, et al. Mixed-mode delamination growth in carbon-fibre composite laminates under cyclic loading[J]. International Journal of Solids and Structures, 2004, 41:4219-4235.
[55] KENANE M, BENZEGGAGH M L. Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading[J]. Composites Science and Technology, 1997, 57(5):597-605.
[56] RUSSELL A J, STREET K N. Predicting interlaminar fatigue crack growth rates in compressively loaded laminates:Delamination and Debonding of Materials ASTM STP 1012[S]. West Conshohocken:ASTM,1989.
[57] ALLEGRI G, WISNOM M R, HALLETT S R. A new semi-empirical law for variable stress-ratio and mixed-mode fatigue delamination growth[J]. Composites Part A:Applied Science and Manufacturing, 2013, 48:192-200.
[58] YAO L J, CUI H, GUO L C, et al. A novel total fatigue life model for delamination growth in composite laminates under generic loading[J]. Composite Structures, 2021, 258:113402.
[59] MARTIN R H, MURRI G. Characterization of mode I and mode II delamination growth and thresholds in AS4/PEEK composites[C]//Symposium on Composite Materials:Testing and Design. Washington,D.C.:NASA, 1990.
[60] BAO G, SUO Z. Remarks on crack-bridging concepts[J]. Applied Mechanics Reviews, 1992, 45(8):355-366.
[61] JACOBSEN T K, SØRENSEN B F. Mode I intra-laminar crack growth in composites-modelling of R-curves from measured bridging laws[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(1):1-11.
[62] DÁVILA C G, ROSE C A, CAMANHO P P. A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites[J]. International Journal of Fracture, 2009, 158(2):211-223.
[63] SHOKRIEH M M, RAJABPOUR-SHIRAZI H, HEIDARI-RARANI M, et al. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method[J]. Computational Materials Science, 2012, 65:66-73.
[64] HEIDARI-RARANI M, SHOKRIEH M M, CAMANHO P P. Finite element modeling of mode I delamination growth in laminated DCB specimens with R-curve effects[J]. Composites Part B:Engineering, 2013, 45(1):897-903.
[65] HEIDARI-RARANI M, SAYEDAIN M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches[J]. Theoretical and Applied Fracture Mechanics, 2019, 103:102246.
[66] YAO L J, ALDERLIESTEN R C, JONES R, et al. Delamination fatigue growth in polymer-matrix fibre composites:A methodology for determining the design and lifing allowables[J]. Composite Structures, 2018, 196:8-20.
[67] YAO L J, ALDERLIESTEN R, ZHAO M Y, et al. Bridging effect on mode I fatigue delamination behavior in composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2014, 63:103-109.
[68] YAO L J, SUN Y, GUO L C, et al. A validation of a modified Paris relation for fatigue delamination growth in unidirectional composite laminates[J]. Composites Part B:Engineering, 2018, 132:97-106.
[69] YAO L J, ALDERLIESTEN R C, BENEDICTUS R. The effect of fibre bridging on the Paris relation for mode I fatigue delamination growth in composites[J]. Composite Structures, 2016, 140:125-135.
[70] YAO L J, SUN Y, ALDERLIESTEN R C, et al. Fibre bridging effect on the Paris relation for mode I fatigue delamination growth in composites with consideration of interface configuration[J]. Composite Structures, 2017, 159:471-478.
[71] YAO L J, SUN Y, GUO L C, et al. Fibre bridging effect on the Paris relation of mode I fatigue delamination in composite laminates with different thicknesses[J]. International Journal of Fatigue, 2017, 103:196-206.
[72] PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. On the relationship between disbond growth and the release of strain energy[J]. Engineering Fracture Mechanics, 2015, 133:1-13.
[73] PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. On the physical interpretation of the R-ratio effect and the LEFM parameters used for fatigue crack growth in adhesive bonds[J]. International Journal of Fatigue, 2017, 97:162-176.
[74] ALDERLIESTEN R C. How proper similitude can improve our understanding of crack closure and plasticity in fatigue[J]. International Journal of Fatigue, 2016, 82:263-273.
[75] YAO L J, ALDERLIESTEN R C, ZHAO M Y, et al. Discussion on the use of the strain energy release rate for fatigue delamination characterization[J]. Composites Part A:Applied Science and Manufacturing, 2014, 66:65-72.
[76] YAO L J, CUI H, ALDERLIESTEN R C, et al. Thickness effects on fibre-bridged fatigue delamination growth in composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 110:21-28.
[77] WATANABE T, TAKEICHI Y, NIWA Y, et al. Nanoscale crack initiation and propagation in carbon fiber/epoxy composites using synchrotron:3D image data[J]. Data in Brief, 2020, 31:105894.
[78] BULL D J, HELFEN L, SINCLAIR I, et al. A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage[J]. Composites Science and Technology, 2013, 75:55-61.
[79] ZHANG J Y, REN J J, LI L J, et al. THz imaging technique for nondestructive analysis of debonding defects in ceramic matrix composites based on multiple echoes and feature fusion[J]. Optics Express, 2020, 28(14):19901-19915.
[80] DILONARDO E, NACUCCHI M, DE PASCALIS F, et al. High resolution X-ray computed tomography:A versatile non-destructive tool to characterize CFRP-based aircraft composite elements[J]. Composites Science and Technology, 2020, 192:108093.
[81] 张瑾. 纤维增强复合材料的太赫兹无损检测研究[D]. 长春:吉林大学, 2016. ZHANG J. Nondestructive evaluation of fiber-reinforced polymer composites using terahertz technology[D]. Changchun:Jilin University, 2016(in Chinese).
[82] 刘松平, 郭恩明, 刘菲菲, 等. 面向大型复合材料结构的高效超声自动扫描成像检测技术[J]. 航空制造技术, 2012, 55(18):79-82. LIU S P, GUO E M, LIU F F, et al. High efficient ultrasonic automatic scanning imaging inspection technique for large-scale composites structure[J]. Aeronautical Manufacturing Technology, 2012, 55(18):79-82(in Chinese).
[83] 海山. 聚焦尖端技术以检测促发展:走进北京航空航天大学先进无损检测技术实验室[J]. 航空制造技术, 2019, 62(3):62-63. HAI S. Promote industrial development with non-destructive testing technology[J]. Aeronautical Manufacturing Technology, 2019, 62(3):62-63(in Chinese).
[84] 雪松. 促进无损检测技术向智能化发展:走进北京理工大学检测与控制研究所[J]. 航空制造技术, 2020, 63(19):74-75. XUE S. Promoting non-destructive testing technology intelligentization[J]. Aeronautical Manufacturing Technology, 2020, 63(19):74-75(in Chinese).
[85] 裘进浩, 张超, 季宏丽, 等. 面向航空复合材料结构的激光超声无损检测技术[J]. 航空制造技术, 2020, 63(19):14-23. QIU J H, ZHANG C, JI H L, et al. Non-destructive testing for aerospace composite structures using laser ultrasonic technique[J]. Aeronautical Manufacturing Technology, 2020, 63(19):14-23(in Chinese).
[86] CHENG J, HE C F, LYU Y, et al. Method for evaluation of surface crack size of wind turbine main shaft by using ultrasonic diffracted waves[J]. Smart Materials and Structures, 2020, 29(7):075009.
[87] HAO J, YANG W X, GUO Z D, et al. Singularity analysis of scanning trajectory and avoidance method for ultrasonic testing robot[C]//2020 IEEE Far East NDT New Technology & Application Forum. Piscataway:IEEE Press, 2020:199-203.
[88] 陈振茂, 解社娟, 李勇, 等. 西安交通大学无损检测实验室:2020年度进展[J]. 无损检测, 2021(4):102-106. CHEN Z M, XIE S J, LI Y, et al. Nondestructive testing laboratory, Xi'an Jiaotong University:Progress in 2020[J]. Nondestructive Testing, 2021(4):102-106(in Chinese).
[89] 周正干. 北京航空航天大学超声无损检测实验室2020年度进展[J]. 无损检测, 2021(10):88-90. ZHOU Z G. Progress of ultrasonic nondestructive testing laboratory in 2020, Beihang University[J]. Nondestructive Testing, 2021(10):88-90(in Chinese).
[90] TOYAMA N, YASHIRO S, TAKATSUBO J, et al. Stiffness evaluation and damage identification in composite beam under tension using Lamb waves[J]. Acta Materialia, 2005, 53(16):4389-4397.
[91] MARDANSHAHI A, NASIR V, KAZEMIRAD S, et al. Detection and classification of matrix cracking in laminated composites using guided wave propagation and artificial neural networks[J]. Composite Structures, 2020, 246:112403.
[92] PENG T S, SAXENA A, GOEBEL K, et al. Integrated experimental and numerical investigation for damage diagnosis in composite materials[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2014:0760.
[93] 廖兴升, 梁智洪, 傅继阳, 等. 基于频率变化预测玻璃纤维增强树脂复合材料层合板的剩余疲劳寿命[J]. 复合材料学报, 2021, 38(10):3323-3337. LIAO X S, LIANG Z H, FU J Y, et al. Prediction of remaining fatigue life of glass fiber reinforced polymer laminates based on frequency change[J]. Acta Materiae Compositae Sinica, 2021, 38(10):3323-3337(in Chinese).
[94] VASSILOPOULOS A P, GEORGOPOULOS E F, DIONYSOPOULOS V. Artificial neural networks in spectrum fatigue life prediction of composite materials[J]. International Journal of Fatigue, 2007, 29(1):20-29.
[95] TAO C C, JI H L, QIU J H, et al. Characterization of fatigue damages in composite laminates using Lamb wave velocity and prediction of residual life[J]. Composite Structures, 2017, 166:219-228.
[96] TAO C C, ZHANG C, JI H L, et al. Fatigue life prediction of GFRP laminates using averaged Bayesian predictive distribution and Lamb wave velocity[J]. Composites Science and Technology, 2020, 196:108213.
[97] TAO C C, ZHANG C, JI H L, et al. Application of neural network to model stiffness degradation for composite laminates under cyclic loadings[J]. Composites Science and Technology, 2021, 203:108573.
[98] 李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8):2620-2650. LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2620-2650(in Chinese).
[99] MARKATOS D N, TSERPES K I, RAU E, et al. The effects of manufacturing-induced and in-service related bonding quality reduction on the mode-I fracture toughness of composite bonded joints for aeronautical use[J]. Composites Part B:Engineering, 2013, 45(1):556-564.
[100] 许巍, 陈力, 张钱城, 等. 粘结界面力学行为及其表征[J]. 中国科学:技术科学, 2012, 42(12):1361-1376. XU W, CHEN L, ZHANG Q C, et al. Mechanical behavior and characterization of bond interface[J]. Scientia Sinica (Technologica), 2012, 42(12):1361-1376(in Chinese).
[101] RAMALHO L D C, CAMPILHO R D S G, BELINHA J, et al. Static strength prediction of adhesive joints:A review[J]. International Journal of Adhesion and Adhesives, 2020, 96:102451.
[102] BANEA M D, DA SILVA L M. Adhesively bonded joints in composite materials:An overview[J]. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications, 2009, 223(1):1-18.
[103] DA SILVA L F M, DAS NEVES P J C, ADAMS R D, et al. Analytical models of adhesively bonded joints-Part I:Literature survey[J]. International Journal of Adhesion and Adhesives, 2009, 29(3):319-330.
[104] DA SILVA L F M, DAS NEVES P J C, ADAMS R D, et al. Analytical models of adhesively bonded joints-Part II:Comparative study[J]. International Journal of Adhesion and Adhesives, 2009, 29(3):331-341.
[105] HART-SMITH L J. Adhesive-bonded single-lap joints[R].Washington,D.C.:NASA,1973.
[106] CROCOMBE A D. Global yielding as a failure criterion for bonded joints[J]. International Journal of Adhesion and Adhesives, 1989, 9(3):145-153.
[107] LUO Q T, TONG L Y. Analytical solutions for nonlinear analysis of composite single-lap adhesive joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(2):144-154.
[108] KUPSKI J, DE FREITAS S T. Design of adhesively bonded lap joints with laminated CFRP adherends:Review, challenges and new opportunities for aerospace structures[J]. Composite Structures, 2021, 268:113923.
[109] HE X C. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4):248-264.
[110] PARK S, DILLARD D A. Development of a simple mixed-mode fracture test and the resulting fracture energy envelope for an adhesive bond[J]. International Journal of Fracture, 2007, 148(3):261-271.
[111] ASTM. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites:D5528[S]. West Conshohocken:ASTM,2001.
[112] ASTM. Standard test method for mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites:D7905[S]. West Conshohocken:ASTM.
[113] ASTM. Standard test method for mixed mode I-mode II Iinterlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites:D6671[S]. West Conshohocken:ASTM, 2013.
[114] WANG W D, RANS C, BENEDICTUS R. Analytical prediction model for fatigue crack growth in fibre metal laminates with MSD scenario[J]. International Journal of Fatigue, 2017, 104:263-272.
[115] DIEGO A F. Fracture mechanics of carbon fibre reinforced plastics to Ti-alloy adhesive joints[D]. London:Imperial College London, 2013.
[116] SUO Z G, HUTCHINSON J W. Interface crack between two elastic layers[J]. International Journal of Fracture, 1990, 43(1):1-18.
[117] WANG W D, LOPES FERNANDES R, TEIXEIRA DE FREITAS S, et al. How pure mode I can be obtained in bi-material bonded DCB joints:A longitudinal strain-based criterion[J]. Composites Part B:Engineering, 2018, 153:137-148.
[118] OUYANG Z Y, JI G F, LI G Q. On approximately realizing and characterizing pure mode-I interface fracture between bonded dissimilar materials[J]. Journal of Applied Mechanics, 2011, 78(3):031020.
[119] OUYANG Z Y, LI G Q. Nonlinear interface shear fracture of end notched flexure specimens[J]. International Journal of Solids and Structures, 2009, 46(13):2659-2668.
[120] WANG W D, DE FREITAS S T, POULIS J A, et al. A review of experimental and theoretical fracture characterization of bi-material bonded joints[J]. Composites Part B:Engineering, 2021, 206:108537.
[121] HUTCHINSON J W, SUO Z. Mixed mode cracking in layered materials[J]. Advances in Applied Mechanics, 1991, 29:63-191.
[122] SCHAPERY R A, DAVIDSON B D. Prediction of energy release rate for mixed-mode delamination using classical plate theory[J]. Applied Mechanics Reviews, 1990, 43(5S):S281-S287.
[123] DAVIDSON B D, HU H R, SCHAPERY R A. An analytical crack-tip element for layered elastic structures[J]. Journal of Applied Mechanics, 1995, 62(2):294-305.
[124] WANG J L, QIAO P Z. Interface crack between two shear deformable elastic layers[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(4):891-905.
[125] QIAO P Z, WANG J L. Mechanics and fracture of crack tip deformable bi-material interface[J]. International Journal of Solids and Structures, 2004, 41(26):7423-7444.
[126] 乔丕忠, 刘庆辉. 双材料梁界面力学及其应用:综述[J]. 力学季刊, 2016, 37(1):1-14. QIAO P Z, LIU Q H. Interface mechanics of Bi-material beams and its application:A review[J]. Chinese Quarterly of Mechanics, 2016, 37(1):1-14(in Chinese).
[127] BRUNO D, GRECO F. Mixed mode delamination in plates:A refined approach[J]. International Journal of Solids and Structures, 2001, 38(50-51):9149-9177.
[128] WILLIAMS J G. On the calculation of energy release rates for cracked laminates[J]. International Journal of Fracture, 1988, 36(2):101-119.
[129] SHAHVERDI M, VASSILOPOULOS A P, KELLER T. Mixed-Mode I/II fracture behavior of asymmetric composite joints[J]. Procedia Structural Integrity, 2016, 2:1886-1893.
[130] SHAHVERDI M, VASSILOPOULOS A P, KELLER T. Mixed-Mode I/II fracture behavior of asymmetric adhesively-bonded pultruded composite joints[J]. Engineering Fracture Mechanics, 2014, 115:43-59.
[131] AROUCHE M M, WANG W D, TEIXEIRA DE FREITAS S, et al. Strain-based methodology for mixed-mode I+II fracture:A new partitioning method for bi-material adhesively bonded joints[J]. The Journal of Adhesion, 2019, 95(5-7):385-404.
[132] LI W, WU T L, WANG W, et al. Broadband patterned magnetic microwave absorber[J]. Journal of Applied Physics, 2014, 116(4):044110.
[133] ZHOU Q, YIN X W, YE F, et al. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption[J]. Materials & Design, 2017, 123:46-53.
[134] SONG W L, ZHOU Z L, WANG L C, et al. Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells[J]. ACS Applied Materials & Interfaces, 2017, 9(49):43179-43187.
[135] WANG Y N, ZHOU Z L, CHEN M J, et al. From nanoscale to macroscale:Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption[J]. Applied Surface Science, 2018, 439:176-185.
[136] HUANG Y X, YUAN X J, CHEN M J, et al. Ultrathin flexible carbon fiber reinforced hierarchical metastructure for broadband microwave absorption with nano lossy composite and multiscale optimization[J]. ACS Applied Materials & Interfaces, 2018, 10(51):44731-44740.
[137] HUANG Y X, SONG W L, WANG C X, et al. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption[J]. Composites Science and Technology, 2018, 162:206-214.
[138] FAN Q F, YANG X Z, LEI H S, et al. Gradient nanocomposite with metastructure design for broadband radar absorption[J]. Composites Part A:Applied Science and Manufacturing, 2020, 129:105698.
[139] HUANG Y X, FAN Q F, CHEN J, et al. Optimization of flexible multilayered metastructure fabricated by dielectric-magnetic nano lossy composites with broadband microwave absorption[J]. Composites Science and Technology, 2020, 191:108066.
[140] HUANG Y X, WU D, ZHANG K, et al. Topological designs of mechanical-electromagnetic integrated laminate metastructure for broadband microwave absorption based on bi-directional evolutionary optimization[J]. Composites Science and Technology, 2021, 213:108898.
[141] YANG L, FAN H L, LIU J, et al. Hybrid lattice-core sandwich composites designed for microwave absorption[J]. Materials & Design, 2013, 50:863-871.
[142] HE F, ZHAO Y, SI K X, et al. Multisection step-impedance modeling and analysis of broadband microwave honeycomb absorbing structures[J]. Journal of Physics D:Applied Physics, 2021, 54(1):015501.
[143] JIANG W, MA H, YAN L L, et al. A microwave absorption/transmission integrated sandwich structure based on composite corrugation channel:Design, fabrication and experiment[J]. Composite Structures, 2019, 229:111425.
[144] ZHAO Y C, LIU J F, SONG Z G, et al. Novel design method for grading honeycomb radar absorbing structure based on dispersive effective permittivity formula[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16:1281-1284.
[145] FENG J, ZHANG Y C, WANG P, et al. Oblique incidence performance of radar absorbing honeycombs[J]. Composites Part B:Engineering, 2016, 99:465-471.
[146] WANG P, ZHANG Y C, CHEN H L, et al. Broadband radar absorption and mechanical behaviors of bendable over-expanded honeycomb panels[J]. Composites Science and Technology, 2018, 162:33-48.
[147] HUANG Y X, WU D, CHEN M J, et al. Evolutionary optimization design of honeycomb metastructure with effective mechanical resistance and broadband microwave absorption[J]. Carbon, 2021, 177:79-89.
[148] HUANG Y X, YUAN X J, CHEN M J, et al. Ultrathin multifunctional carbon/glass fiber reinforced lossy lattice metastructure for integrated design of broadband microwave absorption and effective load bearing[J]. Carbon, 2019, 144:449-456.
[149] HUANG H M, WANG W, HUA M Y, et al. Broadband radar absorbing characteristic based on periodic hollow truncated cone structure[J]. Physica B:Condensed Matter, 2020, 595:412368.
[150] HUANG L X, DUAN Y P, DAI X H, et al. Bioinspired metamaterials:Multibands electromagnetic wave adaptability and hydrophobic characteristics[J]. Small, 2019, 15(40):1902730.
[151] CHOI W H, KIM J B, SHIN J H, et al. Circuit-analog (CA) type of radar absorbing composite leading-edge for wing-shaped structure in X-band:Practical approach from design to fabrication[J]. Composites Science and Technology, 2014, 105:96-101.
[152] CHOI W H, SHIN J H, SONG T H, et al. Design of circuit-analog (CA) absorber and application to the leading edge of a wing-shaped structure[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(3):599-607.
[153] CHOI W H, SHIN J H, SONG T H, et al. A thin hybrid circuit-analog (CA) microwave absorbing double-slab composite structure[J]. Composite Structures, 2015, 124:310-316.
[154] JANG H K, CHOI W H, KIM C G, et al. Manufacture and characterization of stealth wind turbine blade with periodic pattern surface for reducing radar interference[J]. Composites Part B:Engineering, 2014, 56:178-183.
[155] CHOI W H, KIM T I, LEE W J. Broadband radar absorbing sandwich composite with stable absorption performance for oblique incidence and its application to an engine duct for RCS reduction[J]. Advanced Composite Materials, 2021, 30(1):76-90.
[156] EUN S W, CHOI W H, JANG H K, et al. Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures[J]. Composites Science and Technology, 2015, 116:18-25.