贝叶斯推理运动轨迹相干累积的动目标检测方法
收稿日期: 2021-12-16
修回日期: 2021-12-30
录用日期: 2022-03-21
网络出版日期: 2022-03-30
基金资助
国家自然科学基金(11974082)
A moving target detector with coherent integration of Bayesian-inferred motion trajectories
Received date: 2021-12-16
Revised date: 2021-12-30
Accepted date: 2022-03-21
Online published: 2022-03-30
Supported by
National Natural Science Foundation of China(11974082)
雷达理论和实践都表明相干累积是机动目标探测行之有效的方法,但其性能会因脉冲回波处理间隔内未知距离和/或多普勒的徒动而降低。为解决这个问题,提出了一种贝叶斯推理运动轨迹相干累积的动目标检测方法。首先,通过对脉冲压缩回波信号的距离频率进行翻转,就可从未翻转与翻转后的回波信号相乘的傅里叶逆变换中,提取出慢时间维描述待探测多目标运动轨迹的时频信号。视该时频信号中各目标运动轨迹为状态变量,获得的时频信号为观测,建立起多目标运动轨迹的状态空间模型。这样,据贝叶斯滤波推理出的目标运动轨迹,构建出快-慢时间维联合的二维匹配滤波器,就能补偿目标高速/机动带来的未知距离和/或多普勒徒动。理论分析和仿真实验均证明:所提算法适用具有复杂且未知运动状态的目标,且呈现出了优于文献报道方法的性能。
杨文彬 , 王悦斌 , 李旦 , 张建秋 . 贝叶斯推理运动轨迹相干累积的动目标检测方法[J]. 航空学报, 2023 , 44(6) : 326823 -326823 . DOI: 10.7527/S1000-6893.2022.26823
It has been shown theoretically and practically that coherent integration is an effective method for moving target detection. Unfortunately, its performance is seriously damaged by the unknown range and/or Doppler frequency migrations in a coherent processing interval. To handle such a problem, a moving target detector with the coherent integration of Bayesian-inferred motion trajectories is proposed in this paper. Analyses show that by flipping the range-frequency of the pulse compressed echo signal, the time-frequency signal describing the motion trajectories of the detected targets in the slow-time domain is got by the inverse Fourier transform of the product of the original echo signal and the flipped one. When the time-frequency signal is observed and its phases describing the detected moving target trajectories are regarded as state variables, a state space model for inferring the motion trajectories of multiple targets is given. Based on the inferred target trajectories, the range-frequency-slow-time 2D matched filters are constructed to compensate the unknown range and/or Doppler frequency migrations in an echo signal. Numerical simulation results verify that the proposed method can be applied to high speed/maneuvering targets with unknown complex motion form, and has superior performance than the methods reported in the literature.
1 | O’DONNELL R M. Introduction to radar systems[D]. Cambridge: Massachusetts Institute of Technology, 2007. |
2 | KONG L J, LI X L, CUI G L, et al. Coherent integration algorithm for a maneuvering target with high-order range migration[J]. IEEE Transactions on Signal Processing, 2015, 63( 17): 4474- 4486. |
3 | RICHARDS M A. The keystone transformation for correcting range migration in range-Doppler processing[C]∥ IEEE Radar Conference. Piscataway: IEEE Press, 2014: 1– 29. |
4 | 陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36( 12): 1947- 1964. |
CHEN X L, HUANG Y, GUAN J, et al. Review of long-time integration techniques for weak targets using MIMO radar[J]. Journal of Signal Processing, 2020, 36( 12): 1947- 1964 (in Chinese). | |
5 | LI X L, CUI G L, KONG L J, et al. Fast non-searching method for maneuvering target detection and motion parameters estimation[J]. IEEE Transactions on Signal Processing, 2016, 64( 9): 2232- 2244. |
6 | XU J, YU J, PENG Y N, et al. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47( 2): 1186- 1202. |
7 | YU W C, SU W M, GU H. Ground moving target motion parameter estimation using Radon modified Lv’s distribution[J]. Digital Signal Processing, 2017, 69: 212- 223. |
8 | PERRY R P, DIPIETRO R C, FANTE R L. Coherent integration with range migration using keystone formatting[C]∥ 2007 IEEE Radar Conference. Piscataway: IEEE Press, 2007: 863- 868. |
9 | XU J, XIA X G, PENG S B, et al. Radar maneuvering target motion estimation based on generalized radon-Fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60( 12): 6190- 6201. |
10 | YU W C, SU W M, GU H, et al. Weak maneuvering target detection in random pulse repetition interval radar[J]. Signal Processing, 2020, 171: 107520. |
11 | LI H, MA D, WU R B. A low complexity algorithm for across range unit effect correction of the moving target via range frequency polynomial-phase transform[J]. Digital Signal Processing, 2017, 62: 176- 186. |
12 | CHEN X L, GUAN J, ZHENG J B, et al. Non-parametric searching sparse long-time coherent integration method for highly maneuverable target of MIMO radar[C]∥ 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). Piscataway: IEEE Press, 2021: 398- 403. |
13 | SUN Z, LI X L, YI W, et al. Detection of weak maneuvering target based on keystone transform and matched filtering process[J]. Signal Processing, 2017, 140: 127- 138. |
14 | 王悦斌, 蒋景飞, 张建秋. 动态出现和/或消失时频信号的模型和分析[J]. 电子学报, 2019, 47( 2): 495- 501. |
WANG Y B, JIANG J F, ZHANG J Q. A time-frequency model and analytical method for multiple modulated components with dynamic births and deaths[J]. Acta Electronica Sinica, 2019, 47( 2): 495- 501 (in Chinese). | |
15 | 高羽, 张建秋, 尹建君. 机动目标的多项式预测模型及其跟踪算法[J]. 航空学报, 2009, 30( 8): 1479- 1489. |
GAO Y, ZHANG J Q, YIN J J. Polynomial prediction model and tracking algorithm of maneuver target[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30( 8): 1479- 1489 (in Chinese). | |
16 | HEINONEN P, NEUVO Y. FIR-Median hybrid filters with predictive FIR substructures[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36( 6): 892- 899. |
17 | S?RKK? S. Bayesian filtering and smoothing: Particle filtering[M]. Cambridge: Cambridge University Press, 2013. |
18 | STOICA P, ZACHARIAH D, LI J. Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation[J]. Digital Signal Processing, 2014, 33: 1- 12. |
19 | RADOI E, QUINQUIS A. A new method for estimating the number of harmonic components in noise with application in high resolution radar[J]. EURASIP Journal on Advances in Signal Processing, 2004, 2004( 8): 615890. |
20 | XU J, YU J, PENG Y N, et al. Radon-Fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47( 4): 2473- 2489. |
21 | 张召友, 郝燕玲, 吴旭. 3种确定性采样非线性滤波算法的复杂度分析[J]. 哈尔滨工业大学学报, 2013, 45( 12): 111- 115. |
ZHANG Z Y, HAO Y L, WU X. Complexity analysis of three deterministic sampling nonlinear filtering algorithms[J]. Journal of Harbin Institute of Technology, 2013, 45( 12): 111- 115 (in Chinese). | |
22 | DJUROVI? I, SIMEUNOVI? M. Review of the quasi-maximum likelihood estimator for polynomial phase signals[J]. Digital Signal Processing, 2018, 72: 59- 74. |
23 | CAREVIC D, DAVEY S. Two algorithms for modeling and tracking of dynamic time-frequency spectra[J]. IEEE Transactions on Signal Processing, 2016, 64( 22): 6030- 6045. |
24 | XU J, ZHOU X, QIAN L C, et al. Hybrid integration for highly maneuvering radar target detection based on generalized radon-Fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52( 5): 2554- 2561. |
25 | YANG Z, XIE L H. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63( 12): 3139- 3153. |
26 | NGUYEN T H, LOUVEAUX J, DE DONCKER P, et al. Performance analysis of matched-filter precoded MISO-OFDM systems in the presence of imperfect CSI[C]∥ 2020 IEEE 91st Vehicular Technology Conference. Piscataway: IEEE Press, 2020: 1- 5. |
/
〈 |
|
〉 |