温致材料属性变化对发动机双转子系统动力特性的影响
收稿日期: 2022-01-25
修回日期: 2022-02-09
录用日期: 2022-03-09
网络出版日期: 2022-03-22
基金资助
国家自然科学基金(51905025)
Influence of temperature-induced material property changes on dynamic characteristics of engine dual-rotor system
Received date: 2022-01-25
Revised date: 2022-02-09
Accepted date: 2022-03-09
Online published: 2022-03-22
Supported by
National Natural Science Foundation of China(51905025)
为探究不同工况下温度场变化进而导致材料属性变化对双转子系统动力特性的影响,提出将不同工况温度、转速变化与发动机双转子系统动力特性联合分析方法。通过发动机性能方程、相似性原理及稳态热分析方法拟合得到稳定工况双转子温度场,将温度场与转子结构有限元模型联合,推导了双转子系统有限元刚度矩阵受温度场影响的动力学方程。建立了典型发动机双转子支承系统热-固联合分析有限元模型,分析了双转子系统在不同工况温度场下固有频率、模态振型、稳态不平衡响应及应变能分布的变化情况。结果表明:随着工况升高,典型发动机双转子系统固有频率发生不同程度的下降,临界转速随之下降,最大下降幅度接近10%;在涡轮位置不平衡量作用下,受临界转速变化等影响,涡轮支承位置最大工作转速附近平均不平衡响应幅值较常温下增大近3倍,温致材料属性变化对双转子动力特性造成较大的影响。
左彦飞 , 吴易柳 , 王杰 , 冯坤 , 江志农 . 温致材料属性变化对发动机双转子系统动力特性的影响[J]. 航空学报, 2023 , 44(7) : 226993 -226993 . DOI: 10.7527/S1000-6893.2022.26993
To explore the influence of material property changes caused by temperature variation on the dynamic characteristics of dual-rotor systems under different working conditions, a joint analysis method was proposed to analyze the temperature and speed changes under different working conditions and the dynamic characteristics of dual-rotor systems. Through the engine performance equation, similarity principle and steady-state thermal analysis method, the temperature field of dual rotors under stable conditions was fitted, and the temperature field was combined with the finite element model of the rotor. The dynamic equation of the finite element stiffness matrix of dual-rotor system affected by the temperature field was derived. A thermal-solid joint analysis finite element model of a typical engine dual-rotor support system was established, and the changes of the natural frequency, modal mode shape, steady-state unbalance response and strain energy distribution of the dual-rotor system under different temperature fields were analyzed. The results show that with the increase of the operating conditions, the natural frequencies of the typical dual-rotor system decreased; the critical speeds of the system decreased accordingly, with a maximum decrease of nearly 10%. Excited by the unbalance of turbine, the average response amplitude near the maximum operating speed of the turbine related support was nearly three times larger than that at room temperature, showing that the temperature-induced material property changes have a great impact on the dynamic characteristics of dual rotors.
1 | 林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565. |
LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565 (in Chinese). | |
2 | 吴大方, 林鹭劲, 吴文军, 等. 1 500 ℃极端高温环境下高超声速飞行器轻质隔热材料热/振联合试验[J]. 航空学报, 2020, 41(7): 223612. |
WU D F, LIN L J, WU W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1 500 ℃[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 223612 (in Chinese). | |
3 | 张力, 洪杰, 马艳红. 航空发动机转子系统建模方法和振动特性分析[J]. 北京航空航天大学学报, 2013, 39(2): 148-153, 163. |
ZHANG L, HONG J, MA Y H. Modeling method and vibration characteristics of aero-engine rotor system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2): 148-153, 163 (in Chinese). | |
4 | 洪杰, 王华, 肖大为, 等. 转子支承动刚度对转子动力特性的影响分析[J]. 航空发动机, 2008, 34(1): 23-27. |
HONG J, WANG H, XIAO D W, et al. Effects of dynamic stiffness of rotor bearing on rotordynamic characteristics[J]. Aeroengine, 2008, 34(1): 23-27 (in Chinese). | |
5 | 张大义, 刘烨辉, 梁智超, 等. 航空发动机双转子系统临界转速求解方法[J]. 推进技术, 2015, 36(2): 292-298. |
ZHANG D Y, LIU Y H, LIANG Z C, et al. Prediction for critical speed of double spools system in aero engines[J]. Journal of Propulsion Technology, 2015, 36(2): 292-298 (in Chinese). | |
6 | 章健, 张大义, 王永锋, 等. 共用支承-转子结构系统振动耦合特性分析[J]. 北京航空航天大学学报, 2019, 45(9): 1902-1910. |
ZHANG J, ZHANG D Y, WANG Y F, et al. Coupling vibration characteristics analysis of shared support-rotors system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1902-1910 (in Chinese). | |
7 | 左彦飞. 航空发动机整机系统结构振动特性分析[D]. 北京: 北京航空航天大学, 2016: 67-95. |
ZUO Y F. Structural dynamic analysis of the whole aero-engine system[D]. Beijing: Beihang University, 2016: 67-95 (in Chinese). | |
8 | 王杰, 左彦飞, 江志农, 等. 支承非对称对双转子系统动力特性的影响规律[J]. 振动与冲击, 2020, 39(18): 27-33. |
WANG J, ZUO Y F, JIANG Z N, et al. Effect of asymmetrical supports on the dynamic characteristics of a dual-rotor system[J]. Journal of Vibration and Shock, 2020, 39(18): 27-33 (in Chinese). | |
9 | 王杰, 左彦飞, 江志农, 等. 带中介轴承的双转子系统振动耦合作用评估[J]. 航空学报, 2021, 42(6): 224065. |
WANG J, ZUO Y F, JIANG Z N, et al. Evaluation of vibration coupling effect of dual-rotor system with intershaft bearing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 224065 (in Chinese). | |
10 | LI T L, WANG J L, LEI S, et al. Structural characteristics of twin-screw compressor rotor based on thermal-solid coupling method[J]. Journal of Vibroengineering, 2020, 22(6): 1534-1546. |
11 | 朱向哲, 贺威, 袁惠群. 稳态温度场对转子系统振动特性的影响[J]. 东北大学学报(自然科学版), 2008, 29(1): 113-116. |
ZHU X Z, HE W, YUAN H Q. Effects of steady temperature field on vibrational characteristics of a rotor system[J]. Journal of Northeastern University (Natural Science), 2008, 29(1): 113-116 (in Chinese). | |
12 | YU J, DU G, WANG H, et al. The influence of thermal deformation on the AMB-rotor system of HTR-PM helium circulator[J]. Applied Computational Electromagnetics Society Journal, 2019, 34(7):1102-1111. |
13 | GAO P, CHEN Y S, HOU L. Nonlinear thermal behaviors of the inter-shaft bearing in a dual-rotor system subjected to the dynamic load[J]. Nonlinear Dynamics, 2020, 101(1): 191-209. |
14 | PEIXOTO T F, ALVES D S, SILVA TUCKMANTEL F W DA, et al. Effect of thermal boundary conditions on dynamic characteristics of multi-lobed bearings[J]. Mechanism and Machine Theory, 2022, 172: 104787. |
15 | 刘知辉, 牛军川, 贾睿昊. 热梯度环境下梁高频振动的能量流模型[J]. 航空学报, 2022, 43(5): 425336. |
LIU Z H, NIU J C, JIA R H. Energy flow model for high-frequency vibration of beams in thermal-gradient environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 425336 (in Chinese). | |
16 | 李晖, 吕海宇, 邹泽煜, 等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642. |
LI H, LYU H Y, ZOU Z Y, et al. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425642 (in Chinese). | |
17 | 张婷婷, 王克明, 孙阳, 等. 温度场对双转子系统动力特性影响的分析[J]. 沈阳航空航天大学学报, 2013, 30(1): 34-38. |
ZHANG T T, WANG K M, SUN Y, et al. Analysis of the effects of temperature field on dynamic characteristics of dual-rotor system[J]. Journal of Shenyang Aerospace University, 2013, 30(1): 34-38 (in Chinese). | |
18 | 张明根, 胡丽国, 郝小龙, 等. 温度对小型涡轮泵转子临界转速影响研究[J]. 流体机械, 2019, 47(5): 13-17. |
ZHANG M G, HU L G, HAO X L, et al. Study on the influence of temperature on critical speed of small turbo-pump rotor[J]. Fluid Machinery, 2019, 47(5): 13-17 (in Chinese). | |
19 | 何鹏, 刘占生, 刘镇星. 考虑杨氏模量随轴向温度分布变化的转子有限元建模方法研究[J]. 振动与冲击, 2012, 31(14): 22-26, 55. |
HE P, LIU Z S, LIU Z X. Finite element modelling of rotor considering the variation of Yang’s modulus with axial temperature distribution[J]. Journal of Vibration and Shock, 2012, 31(14): 22-26, 55 (in Chinese). | |
20 | 刘少权, 张艳春, 杜兆刚, 等. 温度场对燃气轮机拉杆转子临界转速的影响[J]. 燃气轮机技术, 2011, 24(2): 20-23. |
LIU S Q, ZHANG Y C, DU Z G, et al. Prediction of the influence of temperature field on the critical speeds of a rod-fastened rotor[J]. Gas Turbine Technology, 2011, 24(2): 20-23 (in Chinese). | |
21 | LIU Z H, WANG R R, CAO F, et al. Dynamic behaviour analysis of turbocharger rotor-shaft system in thermal environment based on finite element method[J]. Shock and Vibration, 2020, 2020: 1-18. |
22 | 翁史烈. 燃气轮机性能分析[M]. 上海: 上海交通大学出版社, 1998: 4-9. |
WENG S L. Performance analysis of gas turbine[M]. Shanghai: Shanghai Jiao Tong University Press, 1998: 4-9 (in Chinese). | |
23 | WALSH P P, FLETCHER P. Gas turbine performance[M]. 2nd ed. Malden: Blackwell Science, 2004: 235-244. |
24 | 《中国航空材料手册》编辑委员会. 中国航空材料手册 第2卷 变形高温合金 铸造高温合金[M]. 北京: 中国标准出版社, 2001: 203-215. |
Editorial Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook, Vol. 2: Deformation superalloy, cast superalloy[M]. Beijing: Standards Press of China, 2001: 203-215 (in Chinese). | |
25 | 王建军, 卿立伟, 李其汉. 旋转叶片频率转向与振型转换特性[J]. 航空动力学报, 2007, 22(1): 8-11. |
WANG J J, QING L W, LI Q H. Frequency veering and mode shape interaction for rotating blades[J]. Journal of Aerospace Power, 2007, 22(1): 8-11 (in Chinese). |
/
〈 |
|
〉 |