发动机喷管羽流对近场声爆特性影响的风洞试验技术
收稿日期: 2022-01-14
修回日期: 2022-02-25
录用日期: 2022-03-14
网络出版日期: 2022-03-22
基金资助
国家自然科学基金(11672280)
Wind tunnel test techniques for exhaust nozzle plume effects on near-field sonic boom
Received date: 2022-01-14
Revised date: 2022-02-25
Accepted date: 2022-03-14
Online published: 2022-03-22
Supported by
National Natural Science Foundation of China(11672280)
超声速飞行所引发的声爆问题是困扰新一代环保型超声速客机发展的关键技术难题,发动机喷管羽流对全机声爆特性尤其是后激波特性具有重要影响。设计了单喷管喷流试验模型及声爆试验装置,评估了风洞试验段洞壁反射激波对模型近场压力测量的影响,重点针对通气支臂对喷管羽流的支撑干扰问题进行了分析与优化。基于中国航空工业空气动力研究院FL-60风洞,开展了发动机喷管羽流对旋成体单喷管模型近场声爆特性影响试验技术研究,试验来流马赫数2.0、落压比(NPR)范围1~20.39。研究结果表明,通过对来流马赫数、通气支臂外形、喷流模型长度、通气支臂与模型的相对位置等参数的综合优化,消除了通气支臂带来的支撑干扰对喷管羽流的影响,确保在风洞试验段受限空间内模型近场压力测量不受洞壁反射和通气支臂波系的影响;喷管羽流主要对模型尾部的近场压力特征产生影响,在来流马赫数一定的条件下,提高喷管NPR使喷流状态从过膨胀到欠膨胀,喷管唇口激波逐渐增强、位置逐渐向上游移动,抑制了喷管船尾膨胀波的发展。
刘中臣 , 钱战森 , 李雪飞 , 冷岩 , 郭大鹏 . 发动机喷管羽流对近场声爆特性影响的风洞试验技术[J]. 航空学报, 2023 , 44(2) : 626952 -626952 . DOI: 10.7527/S1000-6893.2022.26952
The sonic boom caused by supersonic flight is a key technical problem hindering the development of a new generation of environmentally friendly supersonic airliners. The exhaust nozzle plume has an important effect on the sonic boom characteristics of the whole aircraft, particularly the rear shock characteristics. We design the single nozzle test model with jet and sonic boom test setup, and evaluate the effects of the reflected shock wave from the tunnel wall on the near-field pressure measurement of the model in the wind tunnel test section. The ventilation strut interference on the nozzle plume is analyzed and optimized. Based on the FL-60 wind tunnel of AVIC Aerodynamics Research Institute, the test techniques for the exhaust nozzle plume effects on the near-field sonic boom characteristics of the axisymmetric nozzle model are researched. The test free stream Mach number is 2.0, and the Nozzle Pressure Ratio (NPR) ranges from 1 to 20.39. The test results demonstrate that the comprehensive optimization of the free stream Mach number, the shape of the ventilation strut, the length of the axisymmetric nozzle model, and the relative position between the ventilation strut and the model eliminates the effect of the ventilation strut interference on the nozzle plume, ensuring that the near-field pressure measurement of the model in the confined space of the wind tunnel test section is not affected by the reflected shock wave from the tunnel wall and the ventilation strut. The nozzle plume mainly affects the near-field pressure signatures at the tail of the model. When the free stream Mach number is constant, the nozzle lip shock wave gradually increases and moves to the upstream with the NPR increasing and the nozzle exhaust flow changing from over-expansion to under-expansion, thereby effectively suppressing the development of the nozzle boat-tail expansion wave.
1 | LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1 Pt 2): 586-598. |
2 | 朱自强, 吴宗成, 陈迎春. 民机空气动力设计先进技术[M]. 上海: 上海交通大学出版社, 2013. |
ZHU Z Q, WU Z C, CHEN Y C. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2013 (in Chinese). | |
3 | 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. |
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese). | |
4 | 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635. |
HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese). | |
5 | PLOTKIN K, MAGLIERI D. Sonic boom research: History and future (invited)[C]∥ 33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003: 3575. |
6 | SAKATA K. Supersonic experimental airplane(NEXST) for next generation SST technology:AIAA-2002-0527 [R]. Reston: AIAA, 2002. |
7 | MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35 (N+3)[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
8 | JONES T. NASA’s quiet supersonic aircraft: AFRC?E-DAA?TN45171 [R]. Oshkosh: EAA Airventure, 2017. |
9 | QIAN Z S, YANG X M. Key aerodynamic technologies of high Mach number civil transport[C]∥ Proceeding of Young Research Conference of the 5th International Forum of Aviation Research, 2014. |
10 | MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom six decades of research. NASA/SP-2014-622[R]: Washington, D.C: NASA, 2014. |
11 | 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600. |
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese). | |
12 | QIAO J L, HAN Z H, ZHANG L W, et al. Far-field sonic boom prediction considering atmospheric turbulence effects: an improved approach[J]. Chinese Journal of Aeronautics, 2022, 35(9): 208-225. |
13 | 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505. |
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505 (in Chinese). | |
14 | 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1): 124916. |
WANG D, QIAN Z S, LENG Y. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124916 (in Chinese). | |
15 | FREUND D, HOWE D, SIMMONS F, et al. Quiet spike prototype aerodynamic characteristics from flight test[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
16 | GRAHAM D, DAHLIN J, MEREDITH K, et al. Aerodynamic design of shaped sonic boom demonstration aircraft[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
17 | HAERING E, MURRAY J, PURIFOY D, et al. Airborne shaped sonic boom demonstration pressure measurements with computational fluid dynamics comparisons[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
18 | PUTNAM L E, CAPONE F J. Experimental determination of equivalent solid bodies to represent jets exhausting into a Mach 2.20 external stream: NASA TN-D-5553[R]: Washington, D.C: NASA, 1969. |
19 | BARGER R L, MELSON N D. Comparison of jet plume shape predictions and plume influence on sonic boom signature:NASA TP?3172[R]. Washington, D.C: NASA, 1992. |
20 | SICLARI M J. Ground signature extrapolation of three-dimensional near-field CFD predictions for several HSCT configurations[R]. Washington, D.C.: NASA Langley Research Center, 1992. |
21 | CASTNER R. Analysis of plume effects on sonic boom signature for isolated nozzle configurations[C]∥ 38th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2008. |
22 | LI W, CAMPBELL R, GEISELHART K, et al. Integration of engine, plume, and CFD analyses in conceptual design of low-boom supersonic aircraft[C]∥ 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
23 | CASTNER R. Exhaust nozzle plume effects on sonic boom test results for isolated nozzles[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
24 | CASTNER R, LAKE T. Exhaust plume effects on sonic boom for a delta wing and swept wing-body model[C]∥ 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
25 | CASTNER R S, CLIFF S E, ELMILIGUI A A, et al. Plume and shock interaction effects on sonic boom in the 1-foot by 1-foot supersonic wind tunnel[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
26 | CASTNER R S. Cart3D analysis of plume and shock interaction effects on sonic boom[C]∥ 33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015. |
27 | CLIFF S E, DENISON M F, MOINI-YEKTA S, et al. Wind tunnel model design for sonic boom studies of nozzle jet flow with shock interactions[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
28 | DURSTON D A, CLIFF S E, DENISON M, et al. Nozzle plume/shock interaction sonic boom test results from the NASA Ames 9- by 7-foot supersonic wind tunnel[C]∥ 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
29 | WINSKI C S, CARTER M B, ELMILIGUI A A, et al. Computational and experimental study of plume and shock interaction effects on sonic boom in the NASA Ames 9x7 supersonic wind tunnel[C]∥ 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
30 | 刘中臣, 钱战森, 冷岩. 声爆近场压力测量风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(4): 636-645. |
LIU Z C, QIAN Z S, LENG Y. Review of recent progress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. Acta Aerodynamica Sinica, 2019, 37(4): 636-645 (in Chinese). | |
31 | 刘中臣, 钱战森, 冷岩, 等. 声爆近场空间压力风洞测量技术[J]. 航空学报, 2020, 41(4): 123596. |
LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel measurement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123596 (in Chinese). | |
32 | 季军, 邓祥东, 白玉平, 等. FL-3风洞喷流试验高精度数字阀的设计与实现[J]. 实验流体力学, 2014, 28(5): 76-80. |
JI J, DENG X D, BAI Y P, et al. Design and implementation of high accurate digital valve for FL-3 wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5): 76-80 (in Chinese). | |
33 | 白亚磊, 明晓. 槽道式气体流量计及其不确定度分析[J]. 计量学报, 2008(5): 441-444. |
BAI Y L, MING X. Channel gas flowmeter and its precision analysis[J]. Acta Metrologica Sinica, 2008(5): 441-444 (in Chinese). |
/
〈 |
|
〉 |