论文

导航脉冲星星历表时空参考系统一性问题

  • 赵成仕 ,
  • 高玉平 ,
  • 童明雷 ,
  • 朱幸芝 ,
  • 罗近涛
展开
  • 1.中国科学院 国家授时中心,西安 710600
    2.中国科学院大学,北京 100049
.E-mail:zhaocs@ntsc.ac.cn

收稿日期: 2021-10-28

  修回日期: 2021-12-23

  录用日期: 2022-03-15

  网络出版日期: 2022-03-22

基金资助

国家自然科学基金(11873050);科技部SKA专项(2020SKA0120103);中国科学院“西部青年学者”(XAB2021YN27)

Unity of pulsar-based ephemeris time-space reference systems for navigation

  • Chengshi ZHAO ,
  • Yuping GAO ,
  • Minglei TONG ,
  • Xingzhi ZHU ,
  • Jintao LUO
Expand
  • 1.National Time Service Center,Chinese Academy of Sciences,Xi’an 710600,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
E-mail: zhaocs@ntsc.ac.cn

Received date: 2021-10-28

  Revised date: 2021-12-23

  Accepted date: 2022-03-15

  Online published: 2022-03-22

Supported by

National Natural Science Foundation of China(11873050);National SKA Program of China(2020SKA0120103);Young Scholars Western China(XAB2021YN27)

摘要

脉冲星具有很高自转稳定性,利用一组统一参考系统下的脉冲星星历表所构建的高精度时空基准,可对飞行器进行自主导航。目前国内尚未观测给出统一参考下的导航脉冲星星历表,国际上已发布的导航脉冲星星历表是在不同参考系统下建立的,无法直接用于构建时空基准,将影响我国近期开展空间脉冲星导航试验。针对没有原始计时观测数据的情况,提出通过模拟计时观测数据,拟合获得新参考系统下的星历表,实现一组导航脉冲星星历表的参考系统统一。最后分析了基于该方法不同参考下的星历表转换精度,其中,DE200转换为DE436后,脉冲星TOA一年内预报值最大偏差由86.6 μs减小为2.3 μs。TT(TAI)转换为TT(BIPM15)后,TOA一年内预报值最大偏差由0.326 μs减小为0.062 μs。基于TEMPO2中transform插件可实现不同参考坐标时下星历表精准转换,转换误差小于6 ns,可忽略不计。参考系统DE421/TT(TAI)/TDB转化为DE436/TT(BIPM15)/TCB后,TOA一年内的预报最大偏差降低为0.047 μs。

本文引用格式

赵成仕 , 高玉平 , 童明雷 , 朱幸芝 , 罗近涛 . 导航脉冲星星历表时空参考系统一性问题[J]. 航空学报, 2023 , 44(3) : 526580 -526580 . DOI: 10.7527/S1000-6893.2022.26580

Abstract

Pulsars have remarkable regularity of rotation, and a high-precision time-space reference constructed from a group of pulsars ephemeris with a unified reference system can realize autonomous navigation for aircraft. At present, the navigation pulsar ephemeris under unified reference system have not been given through observation in China, and the internationally published ephemeris with different reference system cannot directly construct a time space reference, which will affects China's recent pulsar navigation experiments. In the absence of original timing observation data, the pulsar ephemeris is fitted with a new reference system by using the simulated timing observation data to realize the unification of the reference system of a group of navigation pulsar ephemeris. Finally, the accuracy of ephemeris conversion based on this method is analyzed. When the ephemeris reference is converted from DE200 to DE436, the maximum deviation of the pulsar TOA prediction within one year is reduced from 86.6 to 2.3 μs, and the TOA prediction values change from 0.326 to 0.062 μs within one year as the reference time is converted from TT (TAI) to TT (BIPM15). Based on the software transform plug-in in TEMPO2, the ephemeris can be accurately converted under different reference coordinates, and the conversion error is less than 6 ns, which can be ignored. The TOA prediction value is reduced to 0.047 μs within one year as the reference system is converted from DE421/TT(TAI)/TDB to DE436/TT(BIPM15)/TCB.

参考文献

1 孙守明, 郑伟, 汤国建. 基于X射线脉冲星的航天器自主导航数值分析研究[J]. 空间科学学报200828(6): 573-577.
  SUN S M, ZHENG W, TANG G J. Numerical analysis of the autonomous navigation principle and method of space vehicle based on X-ray pulsars[J]. Chinese Journal of Space Science200828(6): 573-577 (in Chinese).
2 TAYLOR J H. Millisecond pulsars: Nature’s most stable clocks[C]∥Proceedings of the IEEE. Piscataway: IEEE Press, 2002: 1054-1062.
3 DOWNS G. Interplanetary navigation using pulsating radio sources: N74-34150 [R]]. Washington, D.C.: NASA, 1974
4 CHESTER T, BUTMAN S. Navigation using X-ray pulsars: N81-27129[R]]. Washington, D.C.: NASA, 1981.
5 PINES D J. ARPA/DARPA space programs[M]. XNAV Industry Day2004: 1-15.
6 SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. College Park: University of Maryland, 2014.
7 BACKER D C, HELLINGS R W. Pulsar timing and general relativity[J]. Annual Review of Astronomy and Astrophysics198624: 537-575.
8 MANCHESTER R N, PETERS W L. Pulsar parameters from timing observations[J]. The Astrophysical Journal Letters1972173: 221.
9 赵成仕, 陈鼎, 蔡宏兵, 等. X射线脉冲星导航可用目标源研究[J]. 天文学进展201129(3): 334-342.
  ZHAO C S, CHEN D, CAI H B, et al. Research on X-ray pulsar navigation sources[J]. Progress in Astronomy201129(3): 334-342 (in Chinese).
10 GE M Y, LU F J, QU J L, et al. X-ray phase-resolved spectroscopy of PSRs b0531+21, b1509-58, and b0540-69 with RXTE[J]. The Astrophysical Journal Letters Supplement Series2012199(2): 32.
11 周庆勇, 刘思伟, 郝晓龙, 等. 空间X射线观测确定脉冲星星历表参数精度分析[J]. 物理学报201665(7): 368-377.
  ZHOU Q Y, LIU S W, HAO X L, et al. Analysis of measurement accuracy of ephemeris parameters for pulsar navigation based on the X-ray space observation[J]. Acta Physica Sinica201665(7): 368-377 (in Chinese).
12 MITCHELL J W, HASSOUNEH M, WINTERNITZ L, et al. SEXTANT - station explorer for X-ray timing and navigation technology[C]∥AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2015: 0865.
13 MITCHELL J W, WINTERNITZ L M, HASSOUNEH M A, et al. SEXTANT X-ray pulsar navigation demonstration: Initial on-orbit results[C]∥41st Annual American Astronautical Society (AAS) Guidance and Control Conference. Breckenridge: AAS, 2018: 1-7.
14 WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥2018 SpaceOps Conference. Reston: AIAA, 2018.
15 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报201927(3): 281-287.
  SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology201927(3): 281-287 (in Chinese).
16 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学201747(9): 120-128.
  ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201747(9): 120-128 (in Chinese).
17 ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[DB/OL]. arXiv preprint1908.01922, 2019.
18 FAIRHEAD L. Systematic astrometric errors in pulsar timing[J]. Symposium - International Astronomical Union1990141: 205-212.
19 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程[J]. 物理学报201362(13): 139701.
  ZHOU Q Y, JI J F, REN H F. Timing equation in X-ray pulsar autonomous navigation[J]. Acta Physica Sinica201362(13): 139701 (in Chinese).
20 HOBBS G B, EDWARDS R T, MANCHESTER R N. TEMPO2, a new pulsar-timing package - I. An overview[J]. Monthly Notices of the Royal Astronomical Society2006369(2): 655-672.
21 EDWARDS R T, HOBBS G B, MANCHESTER R N. TEMPO2, a new pulsar timing package - II. The timing model and precision estimates[J]. Monthly Notices of the Royal Astronomical Society2006372(4): 1549-1574.
22 HOBBS G, ARCHIBALD A, ARZOUMANIAN Z, et al. The international pulsar timing array project: Using pulsars as a gravitational wave detector[J]. Classical and Quantum Gravity201027(8): 084013.
23 VERBIEST J P W, LENTATI L, HOBBS G, et al. The international pulsar timing array: First data release[J]. Monthly Notices of the Royal Astronomical Society2016458(2): 1267-1288.
24 PERERA B B P, DECESAR M E, DEMOREST P B, et al. The international pulsar timing array: Second data release[J]. Monthly Notices of the Royal Astronomical Society2019490(4): 4666-4687.
25 HOBBS G, COLES W, MANCHESTER R N, et al. Development of a pulsar-based time-scale[J]. Monthly Notices of the Royal Astronomical Society2012427(4): 2780-2787.
26 IRWIN A, FUKUSHIMA T. A numerical time ephemeris of the Earth[J]. Astronomy and Astrophysics1999348: 642-652.
文章导航

/