论文

单相机高温三维数字图像相关方法

  • 俞立平 ,
  • 潘兵
展开
  • 北京航空航天大学 固体力学所, 北京 100083

收稿日期: 2022-02-14

  修回日期: 2022-03-14

  网络出版日期: 2022-03-11

基金资助

国家自然科学基金(11925202,11872009,12102022);国家科技重大专项(J2019-V-0006-0099)

Single-camera high-temperature three-dimensional digital image correlation method

  • YU Liping ,
  • PAN Bing
Expand
  • Institute of Solid Mechanics, Beihang University, Beijing 100083, China

Received date: 2022-02-14

  Revised date: 2022-03-14

  Online published: 2022-03-11

Supported by

National Natural Science Foundation of China (11925202, 11872009, 12102022); National Science and Technology Major Project (J2019-V-0006-0099)

摘要

高超声速飞行器热防护材料和结构在地面考核试验中高温变形的准确测量一直是困扰相关工程技术人员的测试技术难题之一。建立了基于单个普通相机/紫外相机和组合式平面反射镜相结合的单相机高温三维数字图像相关(3D-DIC)测量系统,该系统采用高亮度单色光照明(蓝光/紫外照明)和带通滤波成像(蓝色/紫外滤波片)相结合的主动光学成像技术克服高温测量过程中的热辐射干扰问题。首先,采用面内和离面平移实验验证了"主动成像"单相机3D-DIC系统的位移测量精度。然后,利用建立的蓝光单相机3D-DIC系统测量了不锈钢和氧化铝陶瓷试验件不同温度下非直接受热面(后表面)的全场变形,实验测得的材料热膨胀系数与航空材料手册参考值一致。最后,利用建立的紫外单相机3D-DIC系统测量了不锈钢材料直接受热面(前表面)的全场变形,测得材料热膨胀系数同样与参考值接近。

本文引用格式

俞立平 , 潘兵 . 单相机高温三维数字图像相关方法[J]. 航空学报, 2022 , 43(6) : 527031 -527031 . DOI: 10.7527/S1000-6893.2022.27031

Abstract

Accurately characterizing the mechanical performance of the thermal protection materials and structures of hypersonic flight vehicle in extreme high-temperature environments has always been a challenging issue in ground assessment tests which confuses the related engineering technicians. This paper establishes a single-camera 3D-DIC measuring system based on a single normal camera/UV camera and a four-mirror adapter. To overcome the intensified heat radiation problem during high temperature measurement, active optical imaging device including high-brightness monochrome illumination light (blue/ultraviolet light) and band-pass filtering imaging is integrated with the system. First, the in-plane and out-of-plane translation experiments verify the measurement accuracy of the active-imaging single-camera 3D-DIC system. Subsequently, the thermal deformation on the in-directly heating surface (back surface) of the stainless steel and alumina ceramic specimens was measured by the established blue-light single-camera 3D-DIC system, and the determined coefficients of thermal expansion are close to the reference values in aeronautical material handbook. Finally, the thermal deformation on the directly heating surface (front surface) of the stainless steel specimen was measured using the established UV-light single-camera 3D-DIC system, and the measured coefficient of coefficients was also close to the reference value.

参考文献

[1] 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1):47-56. YANG Y Z, YANG J L, FANG D N. Research progress on the thermal protection materials and structures in hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1):47-56(in Chinese).
[2] 韩杰才, 梁军, 王超, 等. 高超声速飞行器两类典型防热材料的性能表征与评价[J]. 力学进展, 2009, 39(6):695-715. HAN J C, LIANG J, WANG C, et al. Material characterization and behavior evaluation of two typical thermal protection materials for hypersonic aircrafts[J]. Advances in Mechanics, 2009, 39(6):695-715(in Chinese).
[3] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84:1-28.
[4] VÖLKL R, FISCHER B. Mechanical testing of ultra-high temperature alloys[J]. Experimental Mechanics, 2004, 44(2):121-127.
[5] JENNER F, WALTER M E, IYENGAR R M, et al. Application of high-speed video extensometry for high-temperature tensile characterization of boron heat-treated steels[J]. The Journal of Strain Analysis for Engineering Design, 2014, 49(6):378-387.
[6] TURNER J L, RUSSELL S S. Application of digital image analysis to strain measurement at elevated temperature[J]. Strain, 1990, 26(2):55-59.
[7] LYONS J S, LIU J, SUTTON M A. High-temperature deformation measurements using digital-image correlation[J]. Experimental Mechanics, 1996, 36(1):64-70.
[8] GRANT B B, STONE H J, WITHERS P J, et al. High-temperature strain field measurement using digital image correlation[J]. The Journal of Strain Analysis for Engineering Design, 2009, 44(4):263-271.
[9] PAN B, WU D F, WANG Z Y, et al. High-temperature digital image correlation method for full-field deformation measurement at 1200℃[J]. Measurement Science and Technology, 2011, 22(1):015701.
[10] YU L, PAN B. Overview of high-temperature deformation measurement using digital image correlation[J]. Experimental Mechanics, 2021, 61(7):1121-1142.
[11] PAN B, WU D F, GAO J X. High-temperature strain measurement using active imaging digital image correlation and infrared radiation heating[J]. The Journal of Strain Analysis for Engineering Design, 2014, 49(4):224-232.
[12] LEPLAY P, RéTHORé J, MEILLE S, et al. Identification of asymmetric constitutive laws at high temperature based on Digital Image Correlation[J]. Journal of the European Ceramic Society, 2012, 32(15):3949-3958.
[13] PAN B, WU D F, YU L P. Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments[J]. Applied Optics, 2012, 51(19):4409.
[14] CHEN X, XU N, YANG L X, et al. High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system[J]. Measurement Science and Technology, 2012, 23(12):125603.
[15] DONG Y L, ZHAO J Q, PAN B. Ultraviolet 3D digital image correlation applied for deformation measurement in thermal testing with infrared quartz lamps[J]. Chinese Journal of Aeronautics, 2020, 33(3):1085-1092.
[16] SUTTON M A, YAN J H, TIWARI V, et al. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements[J]. Optics and Lasers in Engineering, 2008, 46(10):746-757.
[17] PANKOW M, JUSTUSSON B, WAAS A M. Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates[J]. Applied Optics, 2010, 49(17):3418-3427.
[18] YU L P, PAN B. Single-camera stereo-digital image correlation with a four-mirror adapter:Optimized design and validation[J]. Optics and Lasers in Engineering, 2016, 87:120-128.
[19] PAN B, YU L P, ZHANG Q B. Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement[J]. Science China Technological Sciences, 2018, 61(1):2-20.
[20] 潘兵, 吴大方. 基于带通滤波成像的高温数字图像相关方法[J]. 光学学报, 2011, 31(2):59-66. PAN B, WU D F. High-temperature digital image correlation method based on optical band-pass filtering imaging[J]. Acta Optica Sinica, 2011, 31(2):59-66(in Chinese).
[21] 潘兵, 吴大方, 高镇同. 基于数字图像相关方法的非接触高温热变形测量系统[J]. 航空学报, 2010, 31(10):1960-1967. PAN B, WU D F, GAO Z T. A non-contact high-temperature deformation measuring system based on digital image correlation technique[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1960-1967(in Chinese).
[22] PAN B, LI K, TONG W. Fast, robust and accurate digital image correlation calculation without redundant computations[J]. Experimental Mechanics, 2013, 53(7):1277-1289.
[23] 中国航空材料手册编辑委员会. 中国航空材料手册[M]. 北京:中国标准出版社, 2002:565. China Aeronautical Materials Handbook Redaction Committee. China aeronautical materials handbook[M]. Beijing:Standards Press of China, 2002:565(in Chinese).
[24] PAN B, JIANG T Y, WU D F. Strain measurement of objects subjected to aerodynamic heating using digital image correlation:Experimental design and preliminary results[J]. Review of Scientific Instruments, 2014, 85(11):115102.
[25] LEPLAY P, LAFFORGUE O, HILD F. Analysis of asymmetrical creep of a ceramic at 1350℃ by digital image correlation[J]. Journal of the American Ceramic Society, 2015, 98(7):2240-2247.
文章导航

/