宽速域翼尖涡及其与斜激波相互作用
收稿日期: 2022-01-24
修回日期: 2022-02-10
录用日期: 2022-03-04
网络出版日期: 2022-03-11
基金资助
国家自然科学基金(12172354)
Wingtip vortex and its interaction with oblique shock wave in wide-speed range
Received date: 2022-01-24
Revised date: 2022-02-10
Accepted date: 2022-03-04
Online published: 2022-03-11
Supported by
National Natural Science Foundation of China(12172354)
马印锴 , 李祝飞 , 黄琪 , 杨基明 . 宽速域翼尖涡及其与斜激波相互作用[J]. 航空学报, 2023 , 44(7) : 38 -50 . DOI: 10.7527/S1000-6893.2022.26990
Wingtip vortex generated by a wide-speed range flight vehicle and its interaction with oblique shock wave are numerically investigated in a freestream Mach number range of 0.2-6.0. The evolution characteristics of the wingtip vortex are examined and the mechanism of its breakdown induced by the oblique shock wave are revealed. The results show that the tangential velocity and circulation distribution of the wingtip vortex in the wide-speed range still conform to the self-similarity relation in the low-speed flow. In supersonic and hypersonic flow regimes, the intensity of the wingtip vortex decreases more obviously along the flow direction. When the wingtip vortex with a lower pressure at the vortex core interacts with the oblique shock wave, the vortex is easier to break down. However, the existing theories are difficult to accurately predict the vortex breakdown in the wide-speed range. When the classic theory is modified by considering the pressure deficit at the vortex core, the ability to predict the vortex breakdown induced by the oblique shock wave is greatly improved.
1 | MOSES P L. X-43C plans and status: AIAA-2003-7084 [R]. Reston: AIAA, 2003. |
2 | LONGSTAFF R, BOND A. The SKYLON project: AIAA-2011-2244[R]. Reston: AIAA, 2011. |
3 | MEHTA U, AFTOSMIS M, BOWLES J, et al. Skylon aerospace plane and its aerodynamics and plumes[J]. Journal of Spacecraft and Rockets, 2016, 53(2): 340-353. |
4 | SKUJINS T, CESNIK C E S, OPPENHEIMER M W, et al. Canard-elevon interactions on a hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 90-100. |
5 | HALLOCK J N, HOLZ?PFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences, 2018, 98: 27-36. |
6 | CHENG Z P, QIU S Y, XIANG Y, et al. Instability characteristics of a co-rotating wingtip vortex pair based on bi-global linear stability analysis[J]. Chinese Journal of Aeronautics, 2021, 34(5): 1-16. |
7 | 程泽鹏, 邱思逸, 向阳, 等. 基于全局线性稳定性分析的翼尖双涡不稳定特征演化机理[J]. 航空学报, 2020, 41(9): 123751. |
CHENG Z P, QIU S Y, XIANG Y, et al. Evolution mechanism of instability features of wingtip vortex pairs based on bi-global linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123751 (in Chinese). | |
8 | 邱思逸, 程泽鹏, 向阳, 等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报, 2019, 40(8): 122712. |
QIU S Y, CHENG Z P, XIANG Y, et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122712 (in Chinese). | |
9 | KALKHORAN I M, SMART M K. Aspects of shock wave-induced vortex breakdown[J]. Progress in Aerospace Sciences, 2000, 36(1): 63-95. |
10 | GERZ T, HOLZ?PFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208. |
11 | NEDUNGADI A, LEWIS M J. Computational study of the flowfields associated with oblique shock/vortex interactions[J]. AIAA Journal, 1996, 34(12): 2545-2553. |
12 | BATCHELOR G K. Axial flow in trailing line vortices[J]. Journal of Fluid Mechanics, 1964, 20(4): 645-658. |
13 | BIRCH D, LEE T, MOKHTARIAN F, et al. Structure and induced drag of a tip vortex[J]. Journal of Aircraft, 2004, 41(5): 1138-1145. |
14 | BENINATI M L, MARSHALL J S. An experimental study of the effect of free-stream turbulence on a trailing vortex[J]. Experiments in Fluids, 2005, 38(2): 244-257. |
15 | RAMAPRIAN B R, ZHENG Y X. Near field of the tip vortex behind an oscillating rectangular wing[J]. AIAA Journal, 1998, 36(7): 1263-1269. |
16 | GROW T L. Effect of a wing on its tip vortex[J]. Journal of Aircraft, 1969, 6(1): 37-41. |
17 | MCALISTER K W, TAKAHASHI R K. NACA 0015 wing pressure and trailing vortex measurements[R]. Washington D.C.: NASA, 1991. |
18 | RAMAPRIAN B R, ZHENG Y X. Measurements in rollup region of the tip vortex from a rectangular wing[J]. AIAA Journal, 1997, 35(12): 1837-1843. |
19 | SKINNER S N, GREEN R B, ZARE-BEHTASH H. Wingtip vortex structure in the near-field of swept-tapered wings[J]. Physics of Fluids, 2020, 32(9): 095102. |
20 | SMART M K, KALKHORAN I M, BENTSON J. Measurements of supersonic wing tip vortices[J]. AIAA Journal, 1995, 33(10): 1761-1768. |
21 | SHEVCHENKO A, KHARITONOV A, SHMAKOV A. Hypersonic vortex wake behind the wing and its interaction with shock waves[C]∥5 th European Conference for Aerospace Sciences, 2013. |
22 | KALKHORAN I M, SMART M K, BETTI A. Interaction of supersonic wing-tip vortices with a normal shock[J]. AIAA Journal, 1996, 34(9): 1855-1861. |
23 | SMART M K, KALKHORAN I M. Effect of shock strength on oblique shock-wave/vortex interaction[J]. AIAA Journal, 1995, 33(11): 2137-2143. |
24 | MAGRI V, KALKHORAN I M. Numerical investigation of oblique shock wave/vortex interaction[J]. Computers & Fluids, 2013, 86: 343-356. |
25 | CATTAFESTA L N, SETTLES G S. Experiments on shock/vortex interactions: AIAA-1992-0315[R]. Reston: AIAA, 1992. |
26 | HIEJIMA T. Criterion for vortex breakdown on shock wave and streamwise vortex interactions[J]. Physical Review E, 2014, 89(5): 053017. |
27 | SMART M K, KALKHORAN I M. Flow model for predicting normal shock wave induced vortex breakdown[J]. AIAA Journal, 1997, 35(10): 1589-1596. |
28 | MAHESH K. A model for the onset of breakdown in an axisymmetric compressible vortex[J]. Physics of Fluids, 1996, 8(12): 3338-3345. |
29 | ERLEBACHER G, HUSSAINI M Y, SHU C W. Interaction of a shock with a longitudinal vortex[J]. Journal of Fluid Mechanics, 1997, 337: 129-153. |
30 | DELERY J, HOROWITZ E, LEUCHTER O, et al. Fundamental studies on vortex flows[J]. Recherche Aerospatiale (English Edition), 1984(2): 1-24. |
31 | GRUHN P, GüLHAN A. Aerodynamic measurements of an air-breathing hypersonic vehicle at Mach 3.5 to 8[J]. AIAA Journal, 2018, 56(11): 4282-4296. |
32 | 童秉纲, 孔祥言, 邓国华. 气体动力学[M].第 2版. 北京: 高等教育出版社, 2012: 137-143. |
TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing: Higher Education Press, 2012: 137-143 (in Chinese). | |
33 | 李祝飞, 高文智, 杨基明. 一种二元进气道起动特性的数值与实验考察[J]. 推进技术, 2016, 37(7): 1224-1232. |
LI Z F, GAO W Z, YANG J M. Numerical and experimental investigation for starting characteristics of a two-dimensional inlet[J]. Journal of Propulsion Technology, 2016, 37(7): 1224-1232 (in Chinese). | |
34 | LI Y M, LI Z F, YANG J M. Tomography-like flow visualization of a hypersonic inward-turning inlet[J]. Chinese Journal of Aeronautics, 2021, 34(1): 44-49. |
35 | BERESH S J, HENFLING J F, SPILLERS R W. Planar velocimetry of a fin trailing vortex in subsonic compressible flow[J]. AIAA Journal, 2009, 47(7): 1730-1740. |
36 | 马印锴, 李祝飞, 杨基明. 高马赫数来流条件下斜激波与流向涡对相互作用[J]. 推进技术, 2022, 43(1): 88-99. |
MA Y K, LI Z F, YANG J M. Oblique shock wave/streamwise-vortex-pair interaction at a high Mach number[J]. Journal of Propulsion Technology, 2022, 43(1): 88-99 (in Chinese). | |
37 | MA Y K, LI Z F, YANG J M. Planar laser scattering visualization of streamwise vortex pairs in a Mach 6 flow[J]. Chinese Journal of Aeronautics, 2023, 36(1): 166-177. |
38 | BIRCH D M. Self-similarity of trailing vortices[J]. Physics of Fluids, 2012, 24(2): 025105. |
39 | WU Z N, XU Y Z, WANG W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3): 501-513. |
/
〈 |
|
〉 |