论文

全尺寸短舱排气道声衬声学设计与试验验证

  • 霍施宇 ,
  • 杨嘉丰 ,
  • 邓云华 ,
  • 燕群
展开
  • 1. 中国飞机强度研究所 航空声学与振动航空科技重点实验室, 西安 710065;
    2. 中国航空制造技术研究院 航空焊接与连接技术航空科技重点实验室, 北京 100024

收稿日期: 2021-12-02

  修回日期: 2022-03-14

  网络出版日期: 2022-03-11

基金资助

民机专项(MJ-2016-G-66)

Acoustic design and experimental verification of full-scale nacelle exhaust duct liner

  • HUO Shiyu ,
  • YANG Jiafeng ,
  • DENG Yunhua ,
  • YAN Qun
Expand
  • 1. Aviation Science and Technology Key Laboratory of Aeronautical Acoustics and Vibration, Aircraft Strength Research Institute of China, Xi'an 710065, China;
    2. Aeronautical Key Laboratory for Welding and Joining Technologies, AVIC Manufacturing Technology Institute, Beijing 100024, China

Received date: 2021-12-02

  Revised date: 2022-03-14

  Online published: 2022-03-11

Supported by

Commercial Aircraft Project (MJ-2016-G-66)

摘要

针对排气道声衬应用环境,提出了一种适用于短舱排气道声衬的声学设计方法,利用有限元方法建立了排气道声衬声阻抗参数优化模型,根据设计工况和结构约束条件,设计并制备了一套全尺寸排气道内壁声衬试验件。为了验证排气声衬的声学设计方法,研发了频率范围500~16 000 Hz、最大周向15阶模态的全尺寸声衬声学试验平台用以模拟风扇后传噪声特征,分别进行了声衬条件和固壁条件下辐射声场3 m和5 m处的指向性测试,获取了500~1 500 Hz频率范围内的降噪量,试验结果表明设计声衬在950、1 000 Hz频率点的降噪效果最优,充分验证了声衬设计的准确性。分析了设计工况下的声衬在3 m和5 m处辐射声场指向性的声压级分布,试验结果表明0°~90°范围内的最大降噪量分别为10.44 dB和7.21 dB。提出的排气道声衬声学设计与验证方法可为发动机短舱排气道声衬设计与验证提供重要技术支撑。

本文引用格式

霍施宇 , 杨嘉丰 , 邓云华 , 燕群 . 全尺寸短舱排气道声衬声学设计与试验验证[J]. 航空学报, 2022 , 43(6) : 526736 -526736 . DOI: 10.7527/S1000-6893.2022.26736

Abstract

An acoustic design method for nacelle exhaust duct acoustic liner is proposed based on the application environment of exhaust duct acoustic liner. An acoustic impedance parameter optimization model of exhaust duct acoustic liner is established using the finite element method. According to the design conditions and structural constraints, we design and prepare a set of full-scale exhaust duct inner wall acoustic liner simulation test pieces. To verify the acoustic design method for the exhaust sound liner, a full-scale sound liner acoustic test platform with a frequency range of 500-16 000 Hz and a maximum circumferential 15th order mode is developed to simulate the noise characteristics of fan back propagation. The directivity tests at 3 m and 5 m downstream of sound propagation under the sound liner and solid wall conditions are performed, respectively, and the noise reduction in the range of 500-1 500 Hz is obtained. The test results show that the optimal noise reduction effect of the designed sound liner is reached at the frequency of 950 Hz and 1 000 Hz, fully verifying the accuracy of the acoustic liner design. The sound pressure level distribution of the directivity of the radiated sound field at 3 m and 5 m of the sound liner under the design condition is analyzed, and the test results show the maximum noise reduction in the range of 0°-90° being 10.44 dB and 7.21 dB, respectively. The proposed acoustic design and verification method for exhaust duct acoustic liner can provide important technical support for the design and verification of exhaust duct acoustic liner of engine nacelles in China.

参考文献

[1] 陈云永, 杨小贺, 卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报, 2017, 38(9):520953. CHEN Y Y, YANG X H, WEI F F. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):520953(in Chinese).
[2] 乔渭阳, 王良锋, 段文华, 等. 航空发动机气动声学设计的理论、模型和方法[J]. 推进技术, 2021, 42(1):10-38. QIAO W Y, WANG L F, DUAN W H, et al. Theory, model and method of aero-engine aeroacoustic design[J]. Journal of Propulsion Technology, 2021, 42(1):10-38(in Chinese).
[3] HEIDMANN M, SAULE A, MCARDLE J. Analysis of radiation patterns of interaction tones generated by inlet rods in the JT15D engine[C]//5th Aeroacoustics Conference, 1979.
[4] RICE E J. Optimum wall impedance for spinning modes-A correlation with mode cutoff ratio[J]. Journal of Aircraft, 1979, 16(5):336-343.
[5] HEIDELBERG L, RICE E, HOMYAK L. Acoustic performance of inlet suppressors on an engine generating a single mode[C]//7th Aeroacoustics Conference, 1981.
[6] 高翔, 薛东文, 燕群, 等. 涡扇发动机旋转声模态发生与测试试验研究[J]. 科学技术与工程, 2018, 18(23):128-133. GAO X, XUE D W, YAN Q, et al. Research on acoustic spinning mode synthesizer and measurement of turbofan engine method validating experiment[J]. Science Technology and Engineering, 2018, 18(23):128-133(in Chinese).
[7] 薛东文, 燕群, 黄文超. 涡扇发动机声衬的分段式设计与声模态散射分析[J]. 科学技术与工程, 2019, 19(6):270-277. XUE D W, YAN Q, HUANG W C. Design of the segmented liner for turbofan engine and analysis of mode scattering[J]. Science Technology and Engineering, 2019, 19(6):270-277(in Chinese).
[8] 徐健, 英基勇, 薛东文, 等. 复合材料环状声衬降噪特性试验研究[J]. 科学技术与工程, 2020, 20(31):13047-13052. XU J, YING J Y, XUE D W, et al. Noise reduction characteristics test on composite material annular acoustic liner[J]. Science Technology and Engineering, 2020, 20(31):13047-13052(in Chinese).
[9] 高翔, 徐健, 薛东文, 等. 短舱进气道复合材料声衬声学特性试验研究[J]. 装备环境工程, 2020, 17(9):100-105. GAO X, XU J, XUE D W, et al. Acoustic performance test on nacelle inlet composite material annular acoustic liner[J]. Equipment Environmental Engineering, 2020, 17(9):100-105(in Chinese).
[10] 李志彬, 王叙理, 王晓宇, 等. 基于传递单元方法的局域反应声衬设计与试验[J]. 航空学报, 2018, 39(8):98-107. LI Z B, WANG X L, WANG X Y, et al. Design of locally reacting liner based on transfer element method and experimental validation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):98-107(in Chinese).
[11] 陈俊, 周驯黄, 徐珺, 等. 风扇前传噪声及声衬特性研究[J]. 推进技术, 2019, 40(7):1498-1504. CHEN J, ZHOU X H, XU J, et al. Characteristics of fan forward noise and acoustic liner[J]. Journal of Propulsion Technology, 2019, 40(7):1498-1504(in Chinese).
[12] 陈超, 闫照华, 李晓东. 风扇后传声降噪声衬设计方法及实验验证[J]. 航空动力学报, 2018, 33(12):3041-3047. CHEN C, YAN Z H, LI X D. Design method of acoustic liner applied to aft-fan noise reduction and experimental validation[J]. Journal of Aerospace Power, 2018, 33(12):3041-3047(in Chinese).
[13] 霍施宇, 杨嘉丰, 邓云华, 等. 排气道钛合金环形声衬声学特性试验[J]. 航空动力学报, 2020, 35(2):272-279. HUO S Y, YANG J F, DENG Y H, et al. Acoustic characteristics test on aft-fan duct with titanium alloy annular acoustic liner[J]. Journal of Aerospace Power, 2020, 35(2):272-279(in Chinese).
[14] YANG B, WANG T Q, GUAN Y. An approach to predict ducted fan noise by boundary integral equation method[C]//11th AIAA/CEAS Aeroacoustics Conference, 2005.
[15] 王同庆, 张莉爽, 杨兵, 等. 变截面风扇管道快速声散射计算[J]. 航空动力学报, 2011, 26(7):1569-1574. WANG T Q, ZHANG L S, YANG B, et al. Aeroacoustic scattering via the fast scattering method[J]. Journal of Aerospace Power, 2011, 26(7):1569-1574(in Chinese).
[16] 王晓宇, 杜林, 孙晓峰. 考虑变截面影响的航空发动机短舱声学模型及数值结果[J]. 航空学报, 2006, 27(6):1073-1079. WANG X Y, DU L, SUN X F. A new approach for the acoustic design of aeroengine nacelle with the effect of varying cross-section aera[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1073-1079(in Chinese).
[17] SUN X F, WANG X Y, DU L, et al. A new model for the prediction of turbofan noise with the effect of locally and non-locally reacting liners[J]. Journal of Sound and Vibration, 2008, 316(1-5):50-68.
[18] YU J, RUIZ M, KWAN H W. Validation of Goodrich perforate liner impedance model using NASA langley test data[C]//14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008.
[19] TYLER J M, SOFRIN T G. Axial flow compressor noise studies:SAE Technical Paper 620532[R]. Warrendale:SAE International, 1962.
文章导航

/