信息融合

基于证据网络因果分析的空中目标意图识别

  • 张瑜 ,
  • 邓鑫洋 ,
  • 李明炟 ,
  • 李新宇 ,
  • 蒋雯
展开
  • 1. 西北工业大学 电子信息学院,西安 710129

收稿日期: 2022-01-06

  修回日期: 2022-01-25

  网络出版日期: 2022-03-04

基金资助

国家自然科学基金 (62173272)

Air target intention recognition based on evidence-network causal analysis

  • ZHANG Yu ,
  • DENG Xinyang ,
  • LI Mingda ,
  • LI Xinyu ,
  • JIANG Wen
Expand
  • 1. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2022-01-06

  Revised date: 2022-01-25

  Online published: 2022-03-04

Supported by

National Natural Science Foundation of China (62173272)

摘要

目标意图及时准确的估计对战场指挥决策具有重要的影响。考虑到战场环境复杂多变,其检测数据、信息、知识具有较高的随机性和认知不确定性,本文面向目标意图知识推理,基于结构因果模型,利用证据网络在不确定性处理方面的推理优势,提出了一种基于证据网络因果效应分析的空中目标意图识别方法。该方法通过d-分离检验构建兼容信息特性与意图多样性的因果证据网络模型,使模型同时考虑领域知识和数据间的条件独立关系,并将认知不确定性内嵌于推理引擎中,推理实现不确定战场环境下空中目标意图估计。此外,基于提出的因果证据网络模型和干预算子计算目标意图与属性之间的因果效应,挖掘目标意图估计蕴含的因果逻辑关系。仿真分析表明:本文提出的方法能够同时处理随机不确定性与认知不确定性,克服了传统意图识别方法缺乏因果分析的缺陷,是对目标意图和战场态势要素的深层次认知,实现了意图识别的“由果溯因”和“由因识果”。

本文引用格式

张瑜 , 邓鑫洋 , 李明炟 , 李新宇 , 蒋雯 . 基于证据网络因果分析的空中目标意图识别[J]. 航空学报, 2022 , 43(S1) : 726896 -726896 . DOI: 10.7527/S1000-6893.2022.26896

Abstract

Timely and accurate estimation of target intention plays an important role in battlefield command decision-making. Considering the complex battlefield environment, the high randomness and ambiguity of test data, information and knowledge, this paper proposes an air target intention recognition method based on evidence-network causal effect analysis. A causal evidence network model that is compatible with information characteristics and intention diversity is constructed by the d-separation test. The model takes into account the conditional independent relationship between domain knowledge and data, and embeds cognitive uncertainty in the inference engine to achieve intention estimation of aerial targets in uncertain battlefield environment. In addition, based on the proposed causal evidence network model and intervention operator, causal effects are calculated and mined among target intentions and attributes. Simulation analysis shows that the proposed method can deal with both random and cognitive uncertainties, overcoming the defect of lacking causal analysis of traditional methods. With the proposed method, deep cognition of target intention and battlefield situation elements and “effect traceability” and “effect recognition” of intention recognition can be realized.

参考文献

[1] YAO Q K, LIU S J, HE X Y, et al. Research and prospect of battlefield target operational intention recognition[J]. Journal of Command and Control, 2017, 3(2): 127-131 (in Chinese). 姚庆锴, 柳少军, 贺筱媛, 等. 战场目标作战意图识别问题研究与展望[J]. 指挥与控制学报, 2017, 3(2): 127-131.
[2] HALL D L, LLINAS J. Handbook of multisensor data fusion[M]. Boca Raton: CRC Press, 2001.
[3] PRESTON E, BERGMAN T, GORENFLO R, et al. Development of a field-portable imaging system for scene classification using multispectral data fusion algorithms[J]. IEEE Aerospace and Electronic Systems Magazine, 1994, 9(9): 13-19.
[4] WANG H W, SHI H Q, LI X D. An intention recognition method based on intuitionistic fuzzy sets and Bayesian inference[J]. Ship Electronic Engineering, 2019, 39(6): 42-45 (in Chinese). 王海旺, 史红权, 李晓丹. 基于直觉模糊集和贝叶斯推理的意图识别方法[J]. 舰船电子工程, 2019, 39(6): 42-45.
[5] FAN H Y, GAO R Y, JIN X H. Research on intention estimation method based on fuzzy random Bayesian networks[J]. Fire Control & Command Control, 2019, 44(7): 100-104, 109 (in Chinese). 范瀚阳, 高睿源, 金兴华. 基于模糊随机贝叶斯网络的意图估计方法[J]. 火力与指挥控制, 2019, 44(7): 100-104, 109.
[6] WEI W, WANG G B. Detection and recognition of air targets by unmanned aerial vehicle based on RBF neural network[J]. Ship Electronic Engineering, 2018, 38(10): 37-40, 110 (in Chinese). 魏蔚, 王公宝. 基于径向基神经网络的侦察目标意图识别研究[J]. 舰船电子工程, 2018, 38(10): 37-40, 110.
[7] ZHAO F J, ZHOU Z J, HU C H, et al. Aerial target intention recognition approach based on belief-rule-base and evidential reasoning[J]. Electronics Optics & Control, 2017, 24(8): 15-19, 50 (in Chinese). 赵福均, 周志杰, 胡昌华, 等. 基于置信规则库和证据推理的空中目标意图识别方法[J]. 电光与控制, 2017, 24(8): 15-19, 50.
[8] WU Z Q, LI D F. A model for aerial target attacking intention judgment based on reasoning and multi-attribute decision making[J]. Electronics Optics & Control, 2010, 17(5): 10-13 (in Chinese). 伍之前, 李登峰. 基于推理和多属性决策的空中目标攻击意图判断模型[J]. 电光与控制, 2010, 17(5): 10-13.
[9]
[10] CHEN Y M, LI C Y. Simulation of target tactical intention recognition based on knowledge map[J]. Computer Simulation, 2019, 36(8): 1-4, 19 (in Chinese). 陈优敏, 李长云. 基于知识图谱的目标战术意图识别仿真[J]. 计算机仿真, 2019, 36(8): 1-4, 19.
[11] ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322476 (in Chinese). 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 322476.
[12] BAI L, XIAO Y D, QI J T. Adversarial intention recognition based on reinforcement learning[J/OL]. Journal of Command and Control, (2020-12-03)[2022-02-15]. https:∥kns.cnki.net/kcms/detail/14.1379.tp.20201203.1323.002.html(in Chinese). 白亮, 肖延东, 齐景涛. 基于强化学习的对抗意图识别[J/OL]. 指挥与控制学报, (2020-12-03)[2022-02-15]. https:∥kns.cnki.net/kcms/detail/14.1379.tp.20201203.1323.002.html.
[13]
[14] TENG F, LIU S, SONG Y F. BiLSTM-Attention: An air target tactical intention recognition model[J]. Aero Weaponry, 2021, 28(5): 24-32 (in Chinese). 滕飞, 刘曙, 宋亚飞. BiLSTM-Attention: 一种空中目标战术意图识别模型[J]. 航空兵器, 2021, 28(5): 24-32.
[15] ZHOU T L, CHEN M, WANG Y H, et al. Information entropy-based intention prediction of aerial targets under uncertain and incomplete information[J]. Entropy, 2020, 22(3): 279.
[16] CAO S Y, LIU Y A, XUE S. Target tactical intention recognition method of improved high-dimensional data similarity[J]. Transducer and Microsystem Technologies, 2017, 36(5): 25-28 (in Chinese). 曹思远, 刘以安, 薛松. 改进高维数据相似度的目标意图识别方法[J]. 传感器与微系统, 2017, 36(5): 25-28.
[17] POURREZA P, SABERI M, AZADEH A, et al. Health, safety, environment and ergonomic improvement in energy sector using an integrated fuzzy cognitive map─Bayesian network model[J]. International Journal of Fuzzy Systems, 2018, 20(4): 1346-1356.
[18] LESSAN J, FU L P, WEN C. A hybrid Bayesian network model for predicting delays in train operations[J]. Computers & Industrial Engineering, 2019, 127: 1214-1222.
[19] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339.
[20] SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976.
[21] YOU Y Q, SUN J B, GE B F, et al. A data-driven M2 approach for evidential network structure learning[J]. Knowledge-Based Systems, 2020, 187: 104810.
[22] PEARL J, GLYMOUR M, JEWELL N P. Causal inference in statistics: A primer[M]. Hoboken: Wiley, 2016: 26-87.
[23] PEARL J, MACKENZIE D. The book of why: The new science of cause and effect[M]. New York: Allen Lane, 2018: 1-15.
[24] JIANG W. A correlation coefficient for belief functions[J]. International Journal of Approximate Reasoning, 2018, 103: 94-106.
[25] PICHON F, DEN?UX T. The unnormalized dempster's rule of combination: a new justification from the least commitment principle and some extensions[J]. Journal of Automated Reasoning, 2010, 45(1): 61-87.
[26] SMETS P. The application of the matrix calculus to belief functions[J]. International Journal of Approximate Reasoning, 2002, 31(1-2): 1-30.
文章导航

/