大宽高比弯曲混合喷管排气红外和射流噪声抑制
收稿日期: 2021-12-23
修回日期: 2022-01-13
录用日期: 2022-03-02
网络出版日期: 2022-03-04
基金资助
国家科技重大专项(J2019-III-0009-0053)
Suppression of exhaust plume infrared and jet noise of large aspect ratio curved mixing duct
Received date: 2021-12-23
Revised date: 2022-01-13
Accepted date: 2022-03-02
Online published: 2022-03-04
Supported by
National Science and Technology Major Project(J2019-III-0009-0053)
针对大宽高比弯曲混合喷管排气红外和射流噪声抑制的需求,在狭长矩形喷口的基础上对混合喷管喷口结构进行重新设计,包括不同尺寸参数的波瓣喷口和不同侵入程度的冠状锯齿喷口。针对上述喷管,采用数值模拟的方法,获得大宽高比弯曲混合喷管的射流流场,并通过正反射线追踪法和Fluent软件FW-H声学模块分别计算了混合喷管的排气红外辐射强度和射流噪声总声压级。对研究结果进行分析,揭示了狭长矩形喷口、波瓣喷口和冠状锯齿喷口对混合喷管的引射性能、压力损失以及排气红外和噪声特性的影响机制,阐释了喷口激励的流向涡在射流与环境气流掺混过程中的强化主导作用及其抑制排气红外辐射和噪声的兼容性。
杨宗耀 , 张靖周 , 单勇 . 大宽高比弯曲混合喷管排气红外和射流噪声抑制[J]. 航空学报, 2023 , 44(5) : 126848 -126848 . DOI: 10.7527/S1000-6893.2022.26848
To suppress exhaust plume infrared and jet noise of the curved mixing duct with a large aspect ratio, the structure of the mixing duct nozzle is redesigned on the basis of the narrow rectangular nozzle, including lobed nozzles with different structural parameters and coronal sawtooth nozzles with different intrusion degrees. The numerical simulation method is used to obtain the jet flow field of the above nozzles. The forward-reverse ray-tracing method and FW-H acoustic module of Fluent software are used to calculate the infrared radiation intensity of the exhaust plume and the overall sound pressure level of the jet, respectively. Analysis of the results reveals the mechanism of influence of the narrow rectangular nozzle, lobe nozzle and coronal sawtooth nozzle on the pumping performance, pressure loss and exhaust plume infrared and jet noise characteristics of the mixing duct. The strengthening leading role of the flow vortex excited by the lobe nozzle and sawtooth nozzle in the mixing process of jet and ambient air flow and the abilities of the flow vortex to suppress both exhaust plume infrared radiation and jet noise are also explained.
1 | RAO G A, MAHULIKAR S P. Integrated review of stealth technology and its role in airpower[J]. The Aeronautical Journal, 2002, 106(1066): 629-642. |
2 | RAO G A, MAHULIKAR S P. New criterion for aircraft susceptibility to infrared guided missiles[J]. Aerospace Science and Technology, 2005, 9(8): 701-712. |
3 | KANCLEBO S W. Boeing silorsky findings underscore RAH-66 stealth[J]. Aviation Week and Space Technology, 1993, 139(3): 22-23. |
4 | STEVEN A. Tomorrow’s high-tech helicopter[J]. Mechanical Engineering, 1991, 113(6): 41-45. |
5 | 孙中海, 左丽华, 王先炜, 等. 直升机红外隐身技术研究[J]. 直升机技术, 2006(2): 19-24. |
SUN Z H, ZUO L H, WANG X W, et al. Study of infrared signature suppression for helicopter[J]. Helicopter Technique, 2006(2): 19-24 (in Chinese). | |
6 | 唐正府, 张靖周, 单勇. 波瓣喷管-狭长出口弯曲混合管引射混合特性分析[J]. 航空动力学报, 2005, 20(6): 978-982. |
TANG Z F, ZHANG J Z, SHAN Y. Investigation on ejecting and mixing characteristics of lobed nozzle with curved mixing duct and slot exit[J]. Journal of Aerospace Power, 2005, 20(6): 978-982 (in Chinese). | |
7 | 唐正府, 张靖周, 王先炜, 等. 排气系统与尾机身一体化红外抑制器实验分析[J]. 航空动力学报, 2007, 22(2): 233-237. |
TANG Z F, ZHANG J Z, WANG X W, et al. Experimental research on infrared suppressor integrating the exhaust system with the tail part of a helicopter[J]. Journal of Aerospace Power, 2007, 22(2): 233-237 (in Chinese). | |
8 | 任利锋, 张靖周, 王先炜, 等. 直升机后机身内埋式红外抑制器隐身性能分析[J]. 红外与激光工程, 2011, 40(11): 2091-2097. |
REN L F, ZHANG J Z, WANG X W, et al. Analysis of stealth properties on IR radiation suppressor embed inside helicopter rear airframe[J]. Infrared and Laser Engineering, 2011, 40(11): 2091-2097 (in Chinese). | |
9 | PAN C X, ZHANG J Z, SHAN Y. Modeling and analysis of helicopter thermal and infrared radiation[J]. Chinese Journal of Aeronautics, 2011, 24(5): 558-567. |
10 | PAN C X, ZHANG J Z, SHAN Y. Effects of exhaust temperature on helicopter infrared signature[J]. Applied Thermal Engineering, 2013, 51(1-2): 529-538. |
11 | 蒋坤宏, 张靖周, 单勇, 等. 一体化红外抑制器遮挡和出口修型对后机身表面温度和红外辐射特性的影响[J]. 航空学报, 2020, 41(2): 123497. |
JIANG K H, ZHANG J Z, SHAN Y, et al. Effects of sheltering and outlet shaping on surface temperature and infrared radiation characteristics of rear airframe with an integrating infrared suppressor[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123497 (in Chinese). | |
12 | 郑禛, 张靖周. 导流片对大形状比出口弯曲混合管引射性能影响的数值研究[J]. 南京航空航天大学学报, 2020, 52(4): 540-547. |
ZHENG Z, ZHANG J Z. Numerical study on effects of guide baffles on pumping performance of curved mixing duct with a large-aspect-ratio outlet[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 540-547 (in Chinese). | |
13 | 杨宗耀, 张靖周, 单勇. 一体化红外抑制器后机身狭缝进口布置对气流组织和红外辐射特性的影响[J]. 航空学报, 2021, 42(7): 124445. |
YANG Z Y, ZHANG J Z, SHAN Y. Effects of slot-inlet arrangement at infrared-suppressor-integrated rear airframe on flow organization and infrared radiation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124445 (in Chinese). | |
14 | ZHOU Z Y, HUANG J, WANG J J. Radar/infrared integrated stealth optimization design of helicopter engine intake and exhaust system[J]. Aerospace Science and Technology, 2019, 95: 105483. |
15 | ZHOU Z Y, HUANG J, WU N N. Acoustic and radar integrated stealth design for ducted tail rotor based on comprehensive optimization method[J]. Aerospace Science and Technology, 2019, 92: 244-257. |
16 | 冉令可. 锯齿射流的数值模拟及空间稳定性分折[D]. 合肥: 中国科学技术大学, 2017. |
RAN L K. Numerical simulation and spatial stability analysis of chevron jet[D]. Hefei: University of Science and Technology of China, 2017 (in Chinese). | |
17 | UZUN A, LYRINTZIS A, BLAISDELL G. Coupling of integral acoustics methods with LES for jet noise prediction: AIAA-2004-0517[R]. Reston: AIAA, 2004. |
18 | 周志浩. 柴油发动机排气消声器的设计及其性能分析[D]. 上海: 上海应用技术学院, 2015. |
ZHOU Z H. The design and performance analysis of the diesel engine exhaust muffler[D]. Shanghai: Shanghai Institute of Applied Technology, 2015 (in Chinese). | |
19 | International Civil Aviation Organization. Annex 16 Volume I 6th Edition-2011, International standards and recommended practices of aircraft noise [S]. Montreal: ICAO, 2011. |
20 | JORDAN P, GERVAIS Y, VALIERE J C, et al. Final results from single point measurements: Project deliverable D3.4-EU 5th framework programme[R]. Paris: JEAN, 2002. |
21 | ANDERSSON N, ERIKSSON L E, DAVIDSON L. Large-eddy simulation of subsonic turbulent jets and their radiated sound[J]. AIAA Journal, 2005, 43(9): 1899-1912. |
22 | 许聪, 刘琪麟, 赖焕新. 亚音速喷流出口扰动对湍流与声场模拟的影响[J]. 华东理工大学学报(自然科学版), 2021, 47(4): 510-518. |
XU C, LIU Q L, LAI H X. Effects of flow forcing on simulation of subsonic turbulent jet flow and noise[J]. Journal of East China University of Science and Technology, 2021, 47(4): 510-518 (in Chinese). | |
23 | M?SER M. Engineering acoustics: An introduction to noise control[M]. Berlin: Springer Science and Business Media, 2009. |
24 | HAN T, WANG L, CEN K, et al. Flow-induced noise analysis for natural gas manifolds using LES and FW-H hybrid method[J]. Applied Acoustics, 2020, 159: 107101. |
25 | 蔡阳生. 最大声压级的定义及其测量[J]. 广州大学学报(自然科学版), 2008, 7(4): 43-46. |
CAI Y S. The definition and measurement of the maximum sound pressure level[J]. Journal of Guangzhou University (Natural Science Edition), 2008, 7(4): 43-46 (in Chinese). | |
26 | 陈苏麒, 单勇, 张靖周, 等. 挡板构型对直升机红外抑制器气动与红外辐射特性影响研究[J]. 红外与激光工程, 2022, 51(8): 247-259. |
CHEN S Q, SHAN Y, ZHANG J Z, et al. Effect of baffle configuration on aerodynamic and infrared radiation characteristics of helicopter infrared suppressor[J]. Infrared and Laser Engineering, 2022, 51(8): 247-259 (in Chinese). | |
27 | YANG Z Y, ZHANG J Z, SHAN Y. Effects of forward-flight speed on plume flow and infrared radiation of IRS-integrating helicopter[J]. Chinese Journal of Aeronautics, 2022, 35(3): 155-168. |
28 | YANG Z Y, ZHANG J Z, SHAN Y. Research on the influence of integrated infrared suppressor exhaust angle on exhaust plume and helicopter infrared radiation[J]. Aerospace Science and Technology, 2021, 118: 107013. |
29 | 龙新平, 姚鑫, 杨雪龙. 多孔喷嘴射流泵流动模拟与涡结构分析[J]. 排灌机械工程学报, 2012, 30(2): 136-140, 152. |
LONG X P, YAO X, YANG X L. Flow simulation and vortex structure analysis of multi-nozzle jet pumps[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(2): 136-140, 152 (in Chinese). |
/
〈 |
|
〉 |