材料工程与机械制造

复合材料薄板结构中的声学黑洞效应探究

  • 郑锋 ,
  • 黄薇 ,
  • 季宏丽 ,
  • 裘进浩
展开
  • 1.南京航空航天大学 机械结构力学及控制国家重点实验室,南京 210016
    2.南京理工大学 机械工程学院,南京 210094
.E-mail:jihongli@nuaa.edu.cn

收稿日期: 2021-09-28

  修回日期: 2022-01-13

  录用日期: 2022-03-02

  网络出版日期: 2022-03-04

基金资助

国家自然科学基金(52105107);机械结构力学及控制国家重点实验室自主研究课题(MCMS-E- 0521Y01);国家重点研发计划重点专项(2021YFB3400100)

Acoustic black hole effect of composite sheet structures

  • Feng ZHENG ,
  • Wei HUANG ,
  • Hongli JI ,
  • Jinhao QIU
Expand
  • 1.State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

Received date: 2021-09-28

  Revised date: 2022-01-13

  Accepted date: 2022-03-02

  Online published: 2022-03-04

Supported by

National Natural Science Foundation of China(52105107);Open Project of State Key Laboratory of Mechanics and Control of Mechanical Structures(MCMS-E-0521Y01);National Key Research and Development Program of China(2021YEB3400100)

摘要

声学黑洞(ABH)作为一种新型波操控技术,通过裁剪结构厚度以实现波能量的聚集与耗散,在工程结构的减振降噪、能量回收等方面具有很好的应用前景。碳纤维复合材料(CFRP)具有质量轻、高比强度和比模量的特点,广泛应用于航空工程结构中。为了探究复合材料结构中的ABH效应,本文针对内嵌式的碳纤维复合材料ABH薄板结构(CFRP-ABH),利用有限元方法验证了其能量聚集效应,并探究了铺层角度对能量聚集效应的影响。另外,通过仿真计算和实验测试,研究分析了CFRP-ABH结构的动力学特性。结果表明,在200~3 000 Hz的频率范围内,CFRP-ABH结构的振动水平相对于均匀厚度板有5~18 dB的降低,表现出优秀的宽频减振性能。

本文引用格式

郑锋 , 黄薇 , 季宏丽 , 裘进浩 . 复合材料薄板结构中的声学黑洞效应探究[J]. 航空学报, 2023 , 44(1) : 426453 -426453 . DOI: 10.7527/S1000-6893.2022.26453

Abstract

The Acoustic Black Hole (ABH) as a new wave control technology achieves wave energy aggregation and dissipation by cutting structure thickness, exhibiting a good application prospect in vibration and noise reduction and energy recovery of engineering structures. Carbon Fiber Reinforced Plastics (CFRP) is widely used in aeronautical engineering because of its light weight, high specific strength, and specific modulus. To investigate the ABH effect of composite structures, we use the finite element method and verify the existence of energy aggregation characteristic of carbon fiber composite sheet structures embedded with ABH (CFRP-ABH), and further investigate the effect of ply angles on this characteristic. In addition, the dynamic characteristics of CFRP-ABH structures are analyzed through simulation calculation and experimental tests. The results show that the vibration level of the CFRP-ABH structure is 5-18 dB lower than that of the uniform thickness plate in the frequency range of 200-3000 Hz, displaying excellent broadband vibration reduction performance.

参考文献

1 MIRONOV M A. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval [J]. Soviet Physics Acoustics, 1988, 34(3): 318-319.
2 LEE J Y, JEON W. Vibration damping using a spiral acoustic black hole[J]. The Journal of the Acoustical Society of America, 2017, 141(3): 1437.
3 TANG L L, CHENG L. Ultrawide band gaps in beams with double-leaf acoustic black hole indentations[J]. The Journal of the Acoustical Society of America, 2017, 142(5): 2802.
4 DENG J, ZHENG L. Noise reduction via three types of acoustic black holes[J]. Mechanical Systems and Signal Processing, 2022, 165: 108323.
5 DENG J, ZHENG L, GAO N S. Broad band gaps for flexural wave manipulation in plates with embedded periodic strip acoustic black holes[J]. International Journal of Solids and Structures, 2021, 224: 111043.
6 TANG L L, CHENG L. Impaired sound radiation in plates with periodic tunneled acoustic black holes[J]. Mechanical Systems and Signal Processing, 2020, 135: 106410.
7 ZHAO L X. Low-frequency vibration reduction using a sandwich plate with periodically embedded acoustic black holes[J]. Journal of Sound and Vibration, 2019, 441: 165-171.
8 HUANG W, ZHANG H, INMAN D J, et al. Low reflection effect by 3D printed functionally graded acoustic black holes[J]. Journal of Sound and Vibration, 2019, 450: 96-108.
9 KRYLOV V V, WINWARD R E T B. Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates[J]. Journal of Sound and Vibration, 2007, 300(1-2): 43-49.
10 TANG L L, CHENG L. Enhanced acoustic black hole effect in beams with a modified thickness profile and extended platform[J]. Journal of Sound and Vibration, 2017, 391: 116-126.
11 ZHAO L X, CONLON S C, SEMPERLOTTI F. Broadband energy harvesting using acoustic black hole structural tailoring[J]. Smart Materials and Structures, 2014, 23(6): 065021.
12 JI H L, LIANG Y K, QIU J H, et al. Enhancement of vibration based energy harvesting using compound acoustic black holes[J]. Mechanical Systems and Signal Processing, 2019, 132: 441-456.
13 CLIMENTE A, TORRENT D, SáNCHEZ-DEHESA J. Gradient index lenses for flexural waves based on thickness variations[J]. Applied Physics Letters, 2014, 105(6): 064101.
14 YAN S L, LOMONOSOV A M, SHEN Z H. Numerical and experimental study of lamb wave propagation in a two-dimensional acoustic black hole[J]. Journal of Applied Physics, 2016, 119(21): 214902.
15 LOMONOSOV A M, YAN S L, HAN B, et al. Orbital-type trapping of elastic Lamb waves[J]. Ultrasonics, 2016, 64: 58-61.
16 JI H L, LUO J, QIU J H, et al. Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique[J]. Mechanical Systems and Signal Processing, 2018, 104: 19-35.
17 YAN S L, LOMONOSOV A M, SHEN Z H. Evaluation of an acoustic black hole’s structural characteristics using laser-generated Lamb waves[J]. Laser Physics Letters, 2016, 13(2): 025003.
18 HUANG W, JI H L, QIU J H, et al. Analysis of ray trajectories of flexural waves propagating over generalized acoustic black hole indentations[J]. Journal of Sound and Vibration, 2018, 417: 216-226.
19 NOIRET D, ROGET J. Calculation of wave propagation in composite materials using the LAMB wave concept[J]. Journal of Composite Materials, 1989, 23(2): 195-206.
20 LEVIN V M. The propagation of elastic waves in composite materials reinforced with piezoelectric fibres[J]. Journal of Applied Mathematics and Mechanics, 1999, 63(6): 977-984.
21 NANDA N. Wave propagation analysis of laminated composite shell panels using a frequency domain spectral finite element model[J]. Applied Mathematical Modelling, 2021, 89: 1025-1040.
22 DODDI P R V, DORA S P, CHINTADA S. Investigations on the impact of laminate angle on the damping performance of basalt-epoxy composite laminate[J]. Reinforced Plastics, 2021, 65(3): 137-141.
23 KRYLOV V V, TILMAN F J B S. Acoustic ‘black holes’ for flexural waves as effective vibration dampers[J]. Journal of Sound and Vibration, 2004, 274(3-5): 605-619.
24 DENG J, ZHENG L, GUASCH O. Elliptical acoustic black holes for flexural wave lensing in plates[J]. Applied Acoustics, 2021, 174: 107744.
文章导航

/