论文

大型机身壁板复杂应力场试验技术

  • 李崇 ,
  • 柴亚南 ,
  • 王彬文 ,
  • 陈向明 ,
  • 于振波 ,
  • 周红
展开
  • 1. 中国飞机强度研究所, 西安 710065;
    2. 上海飞机设计研究院, 上海 201210

收稿日期: 2021-09-22

  修回日期: 2022-03-09

  网络出版日期: 2022-03-04

基金资助

国家级项目

Test technology for complex stress field of large scale fuselage panel

  • LI Chong ,
  • CHAI Yanan ,
  • WANG Binwen ,
  • CHEN Xiangming ,
  • YU Zhenbo ,
  • ZHOU Hong
Expand
  • 1. Aircraft Strength Research Institute of China, Xi'an 710065, China;
    2. Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

Received date: 2021-09-22

  Revised date: 2022-03-09

  Online published: 2022-03-04

Supported by

National Level Project

摘要

机身壁板在拉伸、压缩、剪切、气压等多种载荷形式下的静强度及耐久性/损伤容限是飞机强度研究中的重要课题,以往的试验技术仅能模拟机身壁板在以上几种载荷单独或联合作用下的均匀应力/应变场。然而飞机机身在舱门或舷窗等大开口结构周围的应力分布十分复杂,单一载荷或少数几种载荷的叠加无法准确模拟复杂的应力场。为了实现对机身壁板大开口结构周围应力分布的准确模拟,开展了大型机身壁板复杂应力场试验技术研究,研发了一套多载荷联合施加试验装置,具有单独或联合施加轴向(拉伸/压缩)、弯曲、面内剪切、端部剪切、地板梁(轴力和弯曲)及气压载荷的能力,各载荷施加系统相互解耦无干涉,通过优化计算各类载荷比例,并按比例联合施加各载荷可使考核区的应力/应变分布与全机有限元解保持一致。经静力和疲劳试验验证,本试验技术和装置能够实现对机身壁板复杂应力/应变状态的准确模拟。

本文引用格式

李崇 , 柴亚南 , 王彬文 , 陈向明 , 于振波 , 周红 . 大型机身壁板复杂应力场试验技术[J]. 航空学报, 2022 , 43(6) : 526409 -526409 . DOI: 10.7527/S1000-6893.2022.26409

Abstract

The static strength and durability/damage tolerance of fuselage panels under various forms of loads such as tension,compression, shear, and air pressure are important topics in aircraft strength research. The previous test technology can only simulate the uniform stress/strain field of fuselage panels under the above loads alone or combined. However, the complex stress distribution of aircraft fuselage around large openings such as hatches or portholes makes it difficult to accurately simulate the complex stress field by a single load or the superposition of a few loads. To realize accurate simulation of the stress distribution around the large opening structure of the fuselage panel, the complex stress field test technology of large fuselage panels was studied, and a set of multi-load joint application test facility was developed to independently or jointly apply axial (tension/compression), bending, in-plane shear, end shear, floor beam (axial force and bending) and air pressure loads. Each load application system is decoupled from each other without interference. The stress/strain distribution in the test area can be consistent with the finite element solution of the complete aircraft by optimizing the proportion of various loads and applying them together according to the proportion. The static and fatigue tests show that the test technology and facility can accurately simulate the complex stress/strain state of fuselage panels.

参考文献

[1] WALKER T H,MINGUET P J,FLYNN B W,et al. Advanced technology composite fuselage-Structural performance:NASA Contractor Report 4732[R]. Washington,D.C.:NASA,1997.
[2] WANG Y, WANG F S, JIA S Q, et al. Experimental and numerical studies on the stability behavior of composite panels stiffened by tilting hat-stringers[J]. Composite Structures, 2017, 174:187-195.
[3] GENG X L, JI F F, WANG J, et al. Experimental and numerical investigations of compression stability of stiffened composite panel with ply interleaving[J]. Journal of Composite Materials, 2017, 51(26):3647-3656.
[4] QIN T L, PENG L, MA B, et al. Experimental and numerical investigation on compressive stability of stiffened composite panel with multiple stringers and frames[J]. Frontiers in Aerospace Engineering, 2017, 6(1):28-38.
[5] KOLANU N R, RAJU G, RAMJI M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J]. Composite Structures, 2018, 196:135-154.
[6] ZHAO L B, WANG K K, DING F, et al. A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding[J]. Results in Physics, 2019, 13:102205.
[7] 童贤鑫.压剪复合加载方案及装置:CN89102131.0[P].1990-10-17. TONG X X. Compression shear composite test scheme and device:CN89102131.0[P]. 1990-10-17(in Chinese).
[8] 柴亚南,李崇,王力立,等. 一种能够均匀施加轴向压缩和剪切载荷的试验装置:CN103033418A[P]. 2013-04-10. CHAI Y N, LI C,WANG L L, et al. A test fixture capable of uniformly applying axial compression and shear loads:CN103033418A[P]. 2013-04-10(in Chinese).
[9] BISAGNI C, CORDISCO P. An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading[J]. Composite Structures, 2003, 60(4):391-402.
[10] ABRAMOVICH H, WELLER T, BISAGNI C. Buckling behavior of composite laminated stiffened panels under combined shear-axial compression[J]. Journal of Aircraft, 2008, 45(2):402-413.
[11] WILCKENS D, ODERMANN F, KLING A. Buckling and post buckling of stiffened CFRP panels under compression and shear-Test and numerical analysis:AIAA-2013-1824[R]. Reston:AIAA, 2013.
[12] CORDISCO P, BISAGNI C. Cyclic buckling tests of stiffened composite curved panels under compression and shear:AIAA-2008-2124[R]. Reston:AIAA, 2008.
[13] BISAGNI C, CORDISCO P. Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque[J]. Composite Structures, 2006, 73(2):138-149.
[14] BISAGNI C. Numerical analysis and experimental correlation of composite shell buckling and post-buckling[J]. Composites Part B:Engineering, 2000, 31(8):655-667.
[15] SERRA J, PIERRÉ J E, PASSIEUX J C, et al. Validation and modeling of aeronautical composite structures subjected to combined loadings:The VERTEX project. Part 1:Experimental setup, FE-DIC instrumentation and procedures[J]. Composite Structures, 2017, 179:224-244.
[16] DONALD J. Baker combined load test fixture:NASA/TM-2010-216211[R]. Washington, D.C.:NASA, 2010.
[17] OSTGAARD D R, PATEL R A, MCNEIL L A. E-fixture:US2006101921A[P].2006-05-18.
[18] 臧伟峰,董登科,王俊安.一种大型机身壁板复杂载荷静力/疲劳试验装置:CN103149075A[P].2015-01-28. ZANG W F, DONG D K, WANG J A. A static/fatigue test fixture for complex load of large fuselage panel:CN103149075A[P]. 2015-01-28(in Chinese).
[19] 柴亚南,邓凡臣,李崇,等. 一种机身壁板复合载荷试验装置:CN104807694B[P]. 2018-01-30. CHAI Y N, DENG F C, LI C, et al. A composite load test device for fuselage panel:CN104807694B[P]. 2018-01-30.
[20] 李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报, 2020, 41(9):223688. LI Z, WANG J, DENG F C, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):223688(in Chinese).
[21] 王彬文,陈向明,邓凡臣,等. 飞机壁板复杂载荷试验技术[J]. 航空学报,2022, 43(3):024987. WANG B W, CHEN X M, DENG F C, et al. Complex load test technology for aircraft panels:Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3):024987(in Chinese).
[22] 郭瑜超,孙喜桂,王立凯,等. 一种曲板试验载荷计算方法:CN110135044A[P]. 2019-08-16. GUO Y C, SUN X G, WANG L K, et al. A calculation method of curved panel test load:CN110135044A[P]. 2019-08-16(in Chinese).
文章导航

/