面向航空发动机与燃气轮机先进热障涂层制备:预热温度对热障涂层表面裂纹形成的影响

  • 李定骏 ,
  • 杨镠育 ,
  • 孙帆 ,
  • 江鹏 ,
  • 陈艺文 ,
  • 王铁军
展开
  • 1. 东方电气集团东方汽轮机有限公司,长寿命高温材料国家重点实验室
    2. 西安交通大学
    3. 西安交通大学航天学院

收稿日期: 2021-08-02

  修回日期: 2022-02-28

  网络出版日期: 2022-03-04

基金资助

国家科技重大专项

Towards the preparation of advanced thermal barrier coating system for gas turbine: effect of preheating temperature on the formation of surface cracks in ceramic layer

  • LI Ding-Jun ,
  • YANG Liao-Yu ,
  • SUN Fan ,
  • JIANG Peng ,
  • CHEN Yi-Wen ,
  • WANG Tie-Jun
Expand

Received date: 2021-08-02

  Revised date: 2022-02-28

  Online published: 2022-03-04

摘要

航空发动机与燃气轮机是关乎国防安全、能源安全与工业竞争力的战略高技术装备,热障涂层是事关其服役安全和寿命的关键核心技术之一。近年来,随着先进航空发动机与燃气轮机技术的发展,燃烧室、涡轮叶片等热端部件的服役温度不断提高,对热障涂层的隔热性能和服役寿命提出了越来越高的要求,传统等离子喷涂热障涂层已无法满足。在热障涂层中引入一定密度的周期分布表面裂纹,可以同时提升涂层的隔热性能和服役寿命,是一种极具经济性和可行性的先进热障涂层技术。然而,目前这种涂层中表面裂纹形成的力学机制研究尚不充分。本文以等离子喷涂热障涂层表面裂纹的形成过程为对象,发展了考虑热应力的多层结构剪切滞后模型,推导了表面裂纹形成前陶瓷层内应力场与位移场的解析解,获得了不同预热温度下陶瓷层内平均应力、平均应变能密度及总应变能随涂层厚度的演变规律,阐明了预热温度对表面裂纹形成的影响,为实现高热障和高应变容限热障涂层的可控制备提供了理论指导。

本文引用格式

李定骏 , 杨镠育 , 孙帆 , 江鹏 , 陈艺文 , 王铁军 . 面向航空发动机与燃气轮机先进热障涂层制备:预热温度对热障涂层表面裂纹形成的影响[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2022.26184

Abstract

Aircraft engine and gas engine are the major strategic equipments related to the national energy security, defense security and industrial competitiveness, and thermal barrier coating system (TBCs) on hot components is one of the key technologies related to its safety and life. In recent years, with the development of advanced aircraft engine and gas turbine technologies, the work temperature of hot components such as combustion chamber and blades is increasing, putting forward higher and higher requirements for the thermal insulation and service life of TBCs, which can’t be satisfied by the tradition air plasma sprayed (APS) coatings. It is a new TBCs technology with great economy and feasibility by introduction periodic surface cracks with certain density into ceramic coating to improve both the thermal insulation and service life of TBCs. However, the formation mechanism of surface cracks in ceramic layer is still unrevealed. In this work, a shear-lag model considering thermal stresses in multilayer structure is developed, and the analytical solutions of the stress and displacement fields in ceramic layer before the formation of surface cracks are derived. The evolution of average stress, average strain energy density and total strain energy in plasma sprayed ceramic layer with coating thickness under different preheating temperatures are obtained. The results illustrate the effect of preheating temperature on the formation of surface cracks in TBCs, which providing theoretical guidance for the controllable preparation of advanced TBCs.

参考文献

[1]王铁军,范学领等。热障涂层强度理论与检测技术.西安交通大学出版社,西安,2016.
WANG T J, FAN X L. Strength theory and testing technology of thermal barrier coatings. Xi'an Jiaotong University Press, Xi'an, 2016. (in chinese).
[2]PADTURE N P, GELL M, JORDAN E H. TBCs for gas-turbine engine applications. Science, 2002, 296(5566): 280-284.
[3]王铁军等. 重型燃气轮机高温透平叶片热障涂层系统中的应力和裂纹问题研究进展. 固体力学学报, 2016, 37(6):477-517.
WANG T J, et al. The stress and cracks in thermal barrier coating system: a review. Chinese Journal of Solid Mechanics, 2016, 37(6):477-517. (in Chinese).
[4]CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines. Mrs Bulletin, 2012, 37(10): 891-899.
[5]MUKTINUTALAPATI N R. Materials for gas turbines - an overview. Intech Open Access Publisher, 2011.
[6]SAMPATH S, et al. Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I: Case study for partially stabilized zirconia. Materials Science & Engineering A, 1999.
[7]FAN X L, XU R, Zhang W X, et al. Effect of periodic surface cracks on the interfacial fracture of thermal barrier coating system. Applied Surface Science, 2012, 258(24): 9816-9823.
[8]KARGER M, VAEN R, STVER D. Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behavior. Surface & Coatings Technology, 2011, 206(1): 16-23.
[9]SAMPATH S, SCHULZ U, JARLIGO M O, et al. Processing science of advanced thermal-barrier systems. Mrs Bulletin, 2012, 37(10): 903-910.
[10]TAYLOR, THOMAS, ALAN. Thermal barrier coating for substrates and process for producing it: US, US5073433 A. 1989.
[11]LAU Y C, GRAY D M, JOHNSON C A, et al. Thermal barrier coatings having an improved columnar microstructure, General Electric Company, 2001.
[12]XING Y Z, YONG L, CHANG J L, et al. Influence of substrate temperature on microcracks formation in plasma-sprayed yttria-stabilized zirconia splats. Key Engineering Materials, 2008, 373: 69-72.
[13]JIANG P, FAN X L, et al. Bending-driven failure mechanism and modelling of double-ceramic-layer thermal barrier coating system. International Journal of Solid and Structures, 2018, 130-131:11-20.
[14]GUO H B, VAEN R, STVER D. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surface & Coatings Technology, 2004, 186(3): 353-363.
[15]AHMANIEMI S, VUORISTO P, MNTYL T, et al. Thermal cycling resistance of modified thick thermal barrier coatings. Surface & Coatings Technology, 2005, 190(2-3): 378-387.
[16]SHINDE S V, EDWARD J, JOHNSON C A, et al. Segmentation crack formation dynamics during air plasma spraying of zirconia. Acta Materialia, 2020, 183:196-206.
[17]BIALAS M. Finite element analysis of stress distribution in thermal barrier coatings. Surf Coat Technol 2008, 202: 6002-10.
[18]SFAR K, AKTAA J, MUNZ D. Numerical investigation of residual stress fields and crack behavior in TBC systems. Material Science Engineer, 2002, A333: 351-60.
[19]WIDJAJA S, LIMARAGA AM, YIP T H. Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating. Thin Solid Films 2003, 434: 216-27.
[20]SU L, ZHANG W, SUN Y, et al. Effect of TGO creep on top-coat cracking induced by cyclic displacement instability in a thermal barrier coating system. Surface & Coatings Technology, 2014, 254: 410-417.
文章导航

/