流体力学与飞行力学

管路中常温推进剂的两相充填特性仿真

  • 任孝文 ,
  • 李平 ,
  • 陈宏玉 ,
  • 周晨初
展开
  • 1. 西安航天动力研究所 液体火箭发动机技术重点实验室, 西安 710100;
    2. 航天推进技术研究院, 西安 710100

收稿日期: 2020-12-03

  修回日期: 2020-12-28

  网络出版日期: 2022-03-04

基金资助

液体火箭发动机技术重点实验室开放基金(6142704180308)

Simulation of two-phase filling characteristics of storable propellant in pipelines

  • REN Xiaowen ,
  • LI Ping ,
  • CHEN Hongyu ,
  • ZHOU Chenchu
Expand
  • 1. Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China;
    2. Academy of Aerospace Propulsion Technology, Xi'an 710100, China

Received date: 2020-12-03

  Revised date: 2020-12-28

  Online published: 2022-03-04

Supported by

Open Fund of the Science and Technology on Liquid Rocket Engine Laboratory (6142704180308)

摘要

常温推进剂在管路中的两相充填特性由于气液相间的相互作用而难以预测。为拓展液体火箭发动机瞬态特性模块化通用仿真模型库对两相充填的仿真能力,基于Modelica模块化建模思想开发了一维有限体积的两相充填管路模型,其中采用等效流容方程计算压力,使用Volume of Fluid (VOF)法捕捉气液界面。对流项离散格式的比较表明,TVD_QUICK格式可同时满足系统仿真对准确性和实时性的要求。对节流孔径的研究表明,在不同的节流孔径比范围内,液体对预存气体管路的充填过程可分为水击效应忽略、水击效应微弱以及水击效应主导3种模式,且最大水击压力峰值一般发生在水击效应主导模式下。此外,夹带有单个气柱的常温推进剂在充填过程中表现出的压力振荡主要由2个因素造成:气柱受到上下游液柱的压缩而产生的压力波动和下游液柱在节流元件位置产生的水击压力振荡;在2种压力波动的耦合作用下管内瞬时压力峰值达到上游供应压力的5倍左右。

本文引用格式

任孝文 , 李平 , 陈宏玉 , 周晨初 . 管路中常温推进剂的两相充填特性仿真[J]. 航空学报, 2022 , 43(2) : 125047 -125047 . DOI: 10.7527/S1000-6893.2021.25047

Abstract

The two-phase filling characteristics of the storable propellant in the pipeline are difficult to predict due to the interaction of gas and liquid. To expand the simulation capabilities of the modular general simulation library for liquid rocket engine transient characteristics for two-phase filling, a two-phase filling pipeline model with one-dimensional finite volume is developed based on the Modelica modular modeling idea. In this model, the equivalent fluid capacity equation and the Volume of Fluid (VOF) method are adopted to calculate the pressure and capture the gas-liquid interface, respectively. The comparison of the discrete formats of advection terms shows that the TVD_QUICK scheme can guarantee the accuracy and real-time performance simultaneously for system simulation. The research on the orifice diameter shows that the filling process of the liquid to the pre-existing gas pipeline can be divided into three modes within the range of different throttle aperture ratios, namely, negligible water hammer effect, weak water hammer effect and dominant water hammer effect, and the peak pressure of water hammer generally occurs in the mode of dominant water hammer effect. In addition, the pressure shock shown by the storable propellant with a single gas column in the filling process is mainly caused by two factors. One is the pressure fluctuation of gas column compressed by the upstream and downstream liquid columns, and the other is the water hammer pressure shock generated by the liquid column downstream of the air column at the position of the throttle element. With the coupling of the two pressure fluctuations, the peak water hammer pressure in the pipeline reaches about 5 times the upstream supply pressure.

参考文献

[1] 程谋森, 张育林. 航天器推进系统管路充填过程动态特性(Ⅰ)理论模型与仿真结果[J].推进技术, 2000, 21(2):25-28. CHENG M S, ZHANG Y L. Dynamic characteristics of priming process in spacecraft propulsion system (Ⅰ) theoretical model and simulation results[J].Journal of Propulsion Technology, 2000, 21(2):25-28(in Chinese).
[2] HATCHER T M, VASCONCELOS J G. Peak pressure surges and pressure damping following sudden air pocket compression[J].Journal of Hydraulic Engineering, 2017, 143(4):04016094.
[3] 陈宏玉, 刘红军, 陈建华, 等. 基于谱方法的管路充填过程仿真[J].航空动力学报, 2012, 27(9):2134-2139. CHEN H Y, LIU H J, CHEN J H, et al. Investigation of priming process of propellant lines using Fourier spectral method[J].Journal of Aerospace Power, 2012, 27(9):2134-2139(in Chinese).
[4] 陈宏玉, 刘红军, 刘上. 推进剂管路充填过程的数值模拟[J].航空动力学报, 2013, 28(3):561-566. CHEN H Y, LIU H J, LIU S. Numerical simulation of priming process of propellant pipelines[J].Journal of Aerospace Power, 2013, 28(3):561-566(in Chinese).
[5] 秦艳平, 梁俊龙, 李斌, 等. 基于有限差分WENO格式的推进剂供应管路充填特性研究[J].推进技术, 2016, 37(9):1759-1765. QIN Y P, LIANG J L, LI B, et al. Priming behaviors in propellant feedline analysis based on high order finite different WENO scheme[J].Journal of Propulsion Technology, 2016, 37(9):1759-1765(in Chinese).
[6] BANDYOPADHYAY A, MAJUMDAR A. Network flow simulation of fluid transients in rocket propulsion systems[J].Journal of Propulsion and Power, 2014, 30(6):1646-1653.
[7] 程谋森, 张育林. 推进剂供应管路充填过程研究[J].推进技术, 1997, 18(2):70-74. CHENG M S, ZHANG Y L. An analysis on prepressurized and evacuated feedline priming process[J].Journal of Propulsion Technology, 1997, 18(2):70-74(in Chinese).
[8] 刘昆, 张育林. 液体推进系统充填过程的有限元状态变量模型[J].推进技术, 2001, 22(1):19-21. LIU K, ZHANG Y L. Finite element state-variable models for the priming process of feed lines[J].Journal of Propulsion Technology, 2001, 22(1):19-21(in Chinese).
[9] 任孝文, 李平, 陈宏玉, 等. 预存气体闭端管路的充填水击研究[J].推进技术, 2020, 41(12):2700-2708. REN X W, LI P, CHEN H Y, et al. Investigation on water hammer during filling process of closed conduit with entrapped air[J].Journal of Propulsion Technology, 2020, 41(12):2700-2708(in Chinese).
[10] ZHOU L, LIU D Y, OU C Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model[J].Engineering Applications of Computational Fluid Mechanics, 2011, 5(1):127-140.
[11] LIU D Y, ZHOU L. Numerical simulation of transient flow in pressurized water pipeline with trapped air mass[C]//2009 Asia-Pacific Power and Energy Engineering Conference. Piscataway:IEEE, 2009:1-4.
[12] ZHOU L, LIU D Y, KARNEY B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline[J].Journal of Hydraulic Engineering, 2013, 139(9):949-959.
[13] MARTIN C S. Entrapped air in pipelines[C]//2nd International Conference on Pressure Surges, 1976.
[14] DE MARTINO G, GIUGNI M, VIPARELLI M, et al. Pressure surges in water mains caused by air release[C]//8th International Conference on Pressure Surges, 2000.
[15] MARTIN C S, LEE N H. Rapid expulsion of entrapped air through an orifice[C]//8th International Conference on Pressure Surges, 2000.
[16] BUCUR D M, DUNCA G, CERVANTES M J, et al. Maximum pressure evaluation during expulsion of entrapped air from pressurized pipelines[J].Journal of Applied Fluid Mechanics, 2017, 10(1):11-20.
[17] ZHOU F, HICKS F E, STEFFLER P M. Observations of air-water interaction in a rapidly filling horizontal pipe[J].Journal of Hydraulic Engineering, 2002, 128(6):635-639.
[18] TIJSSELING A S, HOU Q Z, BOZKUŞ Z. Rapid liquid filling of a pipe with venting entrapped gas:Analytical and numerical solutions[J].Journal of Pressure Vessel Technology, 2019, 141(4):041301.
[19] Modelica Association. Modelica libraries[EB/OL].(2020-06-05)[2020-12-01]. http://www.modelica.org/libraries.
[20] 陈宏玉, 刘红军, 陈建华. 补燃循环发动机强迫起动过程[J].航空动力学报, 2015, 30(12):3010-3016. CHEN H Y, LIU H J, CHEN J H. Forced start-up procedure of a staged combustion cycle engine[J].Journal of Aerospace Power, 2015, 30(12):3010-3016(in Chinese).
[21] 赵建军, 丁建完, 周凡利, 等. Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报, 2006, 18(S2):570-573. ZHAO J J, DING J W, ZHOU F L, et al. Modelica and its mechanism of multi-domain unified modeling and simulation[J].Journal of System Simulation, 2006, 18(S2):570-573(in Chinese).
[22] 周凡利. 工程系统多领域统一模型编译映射与仿真求解研究[D]. 武汉:华中科技大学, 2011. ZHOU F L. Research on compiling and solving of the unified multi-domain model for engeneering systems[D]. Wuhan:Huazhong University of Science and Technology, 2011(in Chinese).
[23] ABREU J, CABRERA E, GARCÍA S J, et al. Influence of trapped air pockets in pumping systems[C]//4th International Conference of Hydraulic Engineering, 1992.
[24] CABRERA E, ABREU J, PÉREZ R, et al. Influence of liquid length variation in hydraulic transients[J].Journal of Hydraulic Engineering, 1992, 118(12):1639-1650.
[25] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J].Journal of Computational Physics, 1981, 39(1):201-225.
[26] CHAUDHRY M H. Applied hydraulic transients[M]. New York:Springer Science & Business Media, 2013:39-48.
[27] 任孝文, 陈宏玉, 李平, 等. 弱可压缩流体与可压缩流体模型的管路水击研究[J].推进技术, 2020, 41(8):1880-1886. REN X W, CHEN H Y, LI P, et al. Investigation on water hammer in pipes by slightly compressible fluid model and compressible fluid model[J].Journal of Propulsion Technology, 2020, 41(8):1880-1886(in Chinese).
[28] REN X W, LI P, CHEN H Y. Numerical simulation of water hammer in liquid methane feedline based on two compressible fluid models[J].Cryogenics, 2020, 109:103122.
[29] 陶文铨. 数值传热学[M]. 2版. 西安:西安交通大学出版社, 2001:198-202. TAO W Q. Numerical heat transfer[M]. 2nd ed. Xi'an:Xi'an Jiaotong University Press, 2001:198-202(in Chinese).
[30] 张凯宏, 江欣, 肖明杰, 等. 基于流固耦合理论的关机水击特性[J].火箭推进, 2019, 45(2):36-43. ZHANG K H, JIANG X, XIAO M J, et al. Characteristics of water hammer in shutting based on FSI[J].Journal of Rocket Propulsion, 2019, 45(2):36-43(in Chinese).
[31] 汪洪波, 吴海燕, 谭建国. 推进系统动力学[M]. 北京:科学出版社, 2018:46-47. WANG H B, WU H Y, TAN J G. Dynamics of propulsion systems[M]. Beijing:Science Press, 2018:46-47(in Chinese).
[32] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京:高等教育出版社, 2012:73-75. TONG B G, KONG X Y, DENG G H. Gasdynamics[M]. 2nd ed. Beijing:Higher Education Press, 2012:73-75(in Chinese).
[33] PETZOLD L R. Description of DASSL:A differential/algebraic system solver[C]//10th IMACS World Congress, 1982.
[34] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics:The finite volume method[M]. New York:Pearson Education, 2007:164-178.
[35] 陈宏玉. 液氧煤油发动机瞬变过程分布参数建模与仿真研究[D].西安:西安航天动力研究所, 2013. CHEN H Y. Investigation on the distributed parameter modeling and simulation of transient characteristics for a LOX/kerosene rocket engine[D]. Xi'an:Xi'an Aerospace Propulsion Institute, 2013(in Chinese).
[36] ZHOU F, HICKS F E, STEFFLER P M. Transient flow in a rapidly filling horizontal pipe containing trapped air[J].Journal of Hydraulic Engineering, 2002, 128(6):625-634.
文章导航

/