This paper compares the numerical results obtained from simulation of moving shock discontinuity, contact discontinuity, uniform flow in the curvilinear coordinate system and shock regular reflection in the first-order upwind scheme and the fifth-order WENO schemes. The shock and contact discontinuities simulated in the WENO schemes exhibit more pronounced non-physical fluctuations and more complicated flow field structures while changing from the initial discontinuity to the numerical transition region than the results in the first-order upwind scheme. Furthermore, the geometrically induced errors and boundary approximation model errors caused by coordinate transformations are significantly larger than those in the first-order upwind scheme. Numerical and theoretical analyses of the phenomena above conclude that higher-order WENO schemes run the risk of magnifying errors in the results under certain computational conditions. Finally, inspired by recently published articles, this paper discusses the contradiction between the current spatial multi-point construction method in high-order schemes and the characteristic line theory of hyperbolic equations.
[1] 刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配法[J].空气动力学学报, 2015, 33(1):10-16. LIU J, ZOU D Y, XU C G. An unsteady shock-fitting technique based on unstructured moving grids[J].Acta Aerodynamica Sinica, 2015, 33(1):10-16(in Chinese).
[2] 刘君, 邹东阳, 董海波. 动态间断装配法模拟斜激波壁面反射[J].航空学报, 2016, 37(3):836-846. LIU J, ZOU D Y, DONG H B. A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3):836-846(in Chinese).
[3] ZOU D Y, XU C G, DONG H B, et al. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes[J].Journal of Computational Physics, 2017, 345:866-882.
[4] CHANG S, BAI X, ZOU D, et al. An adaptive discontinuity fitting technique on unstructured dynamic grids[J].Shock Waves, 2019, 29(8):1103-1115.
[5] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-228.
[6] HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points[J].Journal of Computational Physics, 2005, 207(2):542-567.
[7] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics, 2008, 227(6):3191-3211.
[8] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J].Mathematics of Computation of the American Mathematical Society, 1998, 67(221):73-85.
[9] 刘君, 韩芳. 有关有限差分高精度格式两个应用问题的讨论[J].空气动力学学报, 2020, 38(2):244-253. LIU J, HAN F. Discussions on two problems in applications of high-order finite difference schemes[J].Acta Aerodynamica Sinica, 2020, 38(2):244-253(in Chinese).
[10] 刘君, 魏雁昕, 韩芳. 有限差分法的坐标变换诱导误差[J].航空学报, 2021, 42(6):354-369. LIU J, WEI Y X, HAN F. Coordinate transformation induced errors of finite difference method[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(6):354-369(in Chinese).
[11] NONOMURA T, TERAKADO D, ABE Y, et al. A new technique for freestream preservation of finite-difference WENO on curvilinear grid[J].Computers & Fluids, 2015, 107:242-255.
[12] ZHU Y J, SUN Z S, REN Y X, et al. A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids[J].Journal of Scientific Computing, 2017, 72(3):1021-1048.
[13] 朱志斌, 杨武兵, 禹旻. 满足几何守恒律的WENO格式及其应用[J].计算力学学报, 2017, 34(6):779-784. ZHU Z B, YANG W B, YU M. A WENO scheme with geometric conservation law and its application[J].Chinese Journal of Computational Mechanics, 2017, 34(6):779-784(in Chinese).
[14] DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics, 2011, 230(4):1100-1115.
[15] 刘君, 韩芳, 夏冰. 有限差分法中几何守恒律的机理及算法[J].空气动力学学报, 2018, 36(6):917-926. LIU J, HAN F, XIA B. Mechanism and algorithm for geometric conservation law in finite difference method[J].Acta Aerodynamica Sinica, 2018, 36(6):917-926(in Chinese).
[16] 刘君, 韩芳. 有限差分法中的贴体坐标变换[J].气体物理, 2018, 3(5):18-29. LIU J, HAN F. Body-fitted coordinate transformation for finite difference method[J].Physics of Gases, 2018, 3(5):18-29(in Chinese).
[17] SLOTNICK J P, KHODADOUST A, ALONSO J J, et al. CFD Vision 2030 Study:A Path to Revolutionary Computational Aerosciences:NASA CR-2014-218178[R]. Washington,D.C.:NASA Langley Research Center, 2014.
[18] XIAO F, Li S, CHEN C G. Revisit to the THINC scheme:a simple algebraic VOF algorithm[J].Journal of Computational Physics, 2011, 230(19):7086-7092.
[19] 钱战森. Godunov型显式大时间步长格式研究进展[J].航空学报, 2020, 41(7):023575. QIAN Z S. Research progress of Godunov type explicit large time step scheme[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(7):023575(in Chinese).
[20] 钱翼稷. 空气动力学[M]. 北京:北京航空航天大学出版社, 2004. QIAN Y J. Aerodynamics[M]. Beijing:Beihang University Press, 2004(in Chinese).
[21] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 北京:高等教育出版社,1990:232-237. TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. Beijing:Higher Education Press, 1990:232-237(in Chinese).
[22] MORETTI G. Thirty-six years of shock fitting[J].Computers & Fluids, 2002, 31(4-7):719-723.