先进航空材料焊接/连接专栏

高温合金线性摩擦焊接头疲劳裂纹扩展有限元分析

  • 杨夏炜 ,
  • 彭冲 ,
  • 马铁军 ,
  • 温国栋 ,
  • 王艳莹 ,
  • 柴小霞 ,
  • 徐雅欣 ,
  • 李文亚
展开
  • 1. 西北工业大学 凝固技术国家重点实验室 陕西省摩擦焊接工程技术重点实验室, 西安 710072;
    2. 中煤科工集团西安研究院有限公司, 西安 710077

收稿日期: 2020-11-24

  修回日期: 2020-12-14

  网络出版日期: 2022-03-04

基金资助

国家自然科学基金(51875470,52074228,52075551);凝固技术国家重点实验室自主研究课题(2021-TS-07)

Finite element analysis of fatigue crack growth of linear friction welded superalloy joints

  • YANG Xiawei ,
  • PENG Chong ,
  • MA Tiejun ,
  • WEN Guodong ,
  • WANG Yanying ,
  • CHAI Xiaoxia ,
  • XU Yaxin ,
  • LI Wenya
Expand
  • 1. State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Xi'an Research Institute of China Coal Technology & Engineering Group Corp., Xi'an 710077, China

Received date: 2020-11-24

  Revised date: 2020-12-14

  Online published: 2022-03-04

Supported by

National Natural Science Foundation of China (51875470, 52074228, 52075551);State Key Laboratory of Solidification Processing (2021-TS-07)

摘要

为了表征高温合金线性摩擦焊接头疲劳服役环境下疲劳裂纹的萌生及扩展行为,揭示裂纹扩展对接头失效的影响机制,基于有限元法研究高温合金线性摩擦焊接头疲劳裂纹扩展的行为及其重要影响因素。以接头失效内因(孔洞、硬质夹杂、残余应力)为研究对象,建立不同几何和位置特征的含有初始孔洞及夹杂的疲劳接头有限元模型,研究不同特征下疲劳接头裂纹萌生及扩展的先后顺序,划分裂纹扩展重要因素等级。结果表明:含有初始孔洞及夹杂的疲劳接头裂纹萌生于孔洞及夹杂所在位置,初始夹杂接头试样裂纹均以"绕过"方式扩展,初始孔洞接头试样裂纹均以"横穿"方式扩展,孔洞及夹杂的位置特征对裂纹萌生位置及扩展方式影响较小,裂纹萌生、扩展及试样断裂的时间随着孔洞及夹杂尺寸的增大而提前。接头的残余拉应力加速裂纹的萌生及扩展,裂纹的萌生及扩展时间与拉应力呈正相关。

本文引用格式

杨夏炜 , 彭冲 , 马铁军 , 温国栋 , 王艳莹 , 柴小霞 , 徐雅欣 , 李文亚 . 高温合金线性摩擦焊接头疲劳裂纹扩展有限元分析[J]. 航空学报, 2022 , 43(2) : 625004 -625004 . DOI: 10.7527/S1000-6893.2021.25004

Abstract

To characterize the fatigue crack initiation and growth of linear friction welded superalloy joints in the fatigue environment and reveal the effect of crack growth on joint failure, this study investigates the fatigue crack growth behavior of the linear friction welded superalloy joint and its important influencing factors based on the finite element method. To study the internal causes of joint failure (holes, hard inclusions, and residual stresses), finite element models for the fatigue joints containing initial holes and inclusions with different geometric and location characteristics were established to study the sequence of crack initiation and propagation of the joints and classify important factors of crack growth. The results show that for the fatigue joints with initial holes and inclusions, cracks were initiated at the locations of the holes and inclusions. For the specimens with initial inclusions, the cracks grew in a "bypass" manner. For the joints with initial holes, the cracks were all propagated in a "crossing" manner. The locations of holes and inclusions had little effect on the crack initiation position and propagation mode. Crack initiation, propagation and specimen fracture occurred earlier with the increase of the size of holes and inclusions. The residual tensile stress of the joint accelerates the initiation and propagation of cracks, and the initiation and propagation time of cracks is positively correlated with the tensile stress.

参考文献

[1] 胡晓安, 石多奇, 杨晓光, 等. TMF本构和寿命模型:从光棒到涡轮叶片[J].航空学报, 2019, 40(3):422494. HU X A, SHI D Q, YANG X G, et al. TMF constitutive and life modeling:From smooth specimen to turbine blade[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(3):422494(in Chinese).
[2] 张丽, 吴学仁, 黄新跃. GH4169合金自然萌生小裂纹扩展行为的试验研究[J].航空学报, 2015, 36(3):840-847. ZHANG L, WU X R, HUANG X Y. Experimental investigation on the growth behavior of naturallyinitiated small cracks in superalloy GH4169[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(3):840-847(in Chinese).
[3] 张丽霞, 冯吉才. GH3044镍基合金钎焊接头的界面组织和强度分析[J].材料科学与工艺, 2009, 17(6):770-773. ZHANG L X, FENG J C. Interface structure and strength analysis of brazed GH3044 nickel-based alloy joint[J].Materials Science and Technology, 2009, 17(6):770-773(in Chinese).
[4] 马铁军, 杨思乾, 苏瑾, 等. GH4169线性摩擦焊研究[C]//第十一次全国焊接会议论文集. 2005:3. MA T J, YANG S Q, SU J, et al. Research on linear friction welding of GH4169[C]//Proceedings of the 11th National Welding Conference. 2005:3(in Chinese).
[5] SMITH M, BICHLER L, GHOLIPOUR J, et al. Mechanical properties and microstructural evolution of in-service Inconel 718 superalloy repaired by linear friction welding[J].The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8):1931-1946.
[6] 吴辉, 孙敏, 杨燕. 线性摩擦焊技术研究进展[J].焊接技术, 2014, 7:1-4. WU H, SUN M, YANG Y. Research progress of linear friction welding technology[J].Welding Technology, 2014, 7:1-4(in Chinese).
[7] SU Y, LI W Y, WANG X Y, et al. The sensitivity analysis of microstructure and mechanical properties to welding parameters for linear friction welded rail steel joints[J].Materials Science and Engineering:A, 2019, 764:138251.
[8] MCANDREW A R, COLEGROVE P A, BVHR C, et al. A literature review of Ti-6Al-4V linear friction welding[J].Progress in Materials Science, 2018, 92:225-257.
[9] 吴冰, 李晋炜, 毛智勇, 等. 镍基高温合金电子束焊接接头疲劳性能[J].焊接学报, 2013, 34(8):109-112, 118. WU B, LI J W, MAO Z Y, et al. Fatigue properties of electron beam welded joints of Nickel-base superalloy[J].Transactions of the China Welding Institution, 2013, 34(8):109-112, 118(in Chinese).
[10] WU B, MAO Z Y, GUO H D, et al. Fatigue properties of thin superalloys electron beam welded Joint[J].稀有金属材料与工程, 2013, 42(增刊2):226-230. WU B, MAO Z Y, GUO H D, et al. Fatigue properties of thin superalloys electron beam welded JointFull-text in English[J].Rare Metal Materials and Engineering, 2013, 42(Sup 2):226-230(in Chinese).
[11] LIU Z, GUO X Y, CUI H C, et al. Role of misorientation in fatigue crack growth behavior for NG-TIG welded joint of Ni-based alloy[J].Materials Science and Engineering:A, 2018, 710:151-163.
[12] 赵利利, 邵玲, 顾玉丽, 等. GH625合金氩弧焊焊接接头的疲劳裂纹扩展性能[J].材料热处理学报, 2016, 37(1):180-184. ZHAO L L, SHAO L, GU Y L, et al. Fatigue crack growth of gas tungsten arc weld joint of GH625 alloy[J].Transactions of Materials and Heat Treatment, 2016, 37(1):180-184(in Chinese).
[13] 于维成, 袁金才, 柯伟, 等. 铸造镍基高温合金疲劳裂纹的形成与扩展[J].航空学报, 1985, 6(1):75-82. YU W C, YUAN J C, KE W, et al. Fatigue crack initiation and propagation of nickel base superalloy[J].Acta Aeronautica et Astronautica Sinica, 1985, 6(1):75-82(in Chinese).
[14] HUNG TRA T, SAKAGUCHI M. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures[J].Journal of Science:Advanced Materials and Devices, 2016, 1(4):501-506.
[15] YANG X W, LI W Y, MA T J. Finite element analysis of the effect of micro-pore defect on linear friction welding of medium carbon steel[J].China Welding, 2014(1):1-5.
[16] ZHAO L G, TONG J, HARDY M C. Prediction of crack growth in a nickel-based superalloy under fatigue-oxidation conditions[J].Engineering Fracture Mechanics, 2010, 77(6):925-938.
[17] 柴国钟, 吕君, 鲍雨梅, 等. 表面裂纹疲劳扩展和寿命计算的高效高精度数值分析方法[J].航空学报, 2017, 38(12):221291. CHAI G Z, LYU J, BAO Y M, et al. A highly efficient and accurate numerical analysis method for fatigue propagation of surface crack and life prediction[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(12):221291(in Chinese).
[18] 张彦华, 贾安东, 王立君. 疲劳裂纹扩展随机模型[J].航空学报, 1994,15(7):806-811. ZHANG Y H, JIA A D, WANG L J. Stochastic model for fatigue crack growth[J].Acta Aeronautica et Astronautica Sinica, 1994,15(7):806-811(in Chinese).
[19] 顾志旭, 郑坚, 彭威, 等. HTPB黏弹性微裂纹偏折扩展损伤本构模型[J].航空学报, 2018, 39(9):222059. GU Z X, ZHENG J, PENG W, et al. A viscoelastic damage constitutive model for HTPB with kinked growth of microcracks[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(9):222059(in Chinese).
[20] 朱文博. 工程陶瓷旋转超声钻削效率的有限元分析[D]. 哈尔滨:哈尔滨工业大学, 2007. ZHU W B. FEA of efficiency in rotary ultrasonic drilling of engineering ceramics[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese).
[21] SMITH R A, COOPER J F. A finite element model for the shape development of irregular planar cracks[J].International Journal of Pressure Vessels and Piping, 1989, 36(4):315-326.
[22] SUMI Y, YANG C, HAYASHI S. Morphological aspects of fatigue crack propagation Part I-Computational procedure[J].International Journal of Fracture, 1996, 82(3):205-220.
[23] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620.
[24] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J].航空学报, 2019, 40(1):522509. ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522509(in Chinese).
[25] 郭建亭. 高温合金材料学[M]. 北京:科学出版社, 2008. GUO J T. High temperature alloy material science[M]. Beijing:Science Press,2018(in Chinese).
[26] 李其棒. 航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展数值模拟研究[D]. 湘潭:湘潭大学, 2016:17-19. LI Q B. Aeroengine turbine disk GH4133B alloy fatigue crack propagation numerical simulation study[D]. Xiangtan:Xiangtan University, 2016:17-19(in Chinese).
[27] SCHÖLLMANN M, RICHARD H A, KULLMER G, et al. A new criterion for the prediction of crack development in multiaxially loaded structures[J].International Journal of Fracture, 2002, 117(2):129-141.
[28] 谷雨. 基于XFEM的梁柱节点断裂分析及裂纹扩展研究[D]. 兰州:兰州理工大学, 2016:26-27. GU Y. Fracture analysis and crack propagation research of beam-column joints based on XFEM[D]. Lanzhou:Lanzhou University of Technology, 2016:26-27(in Chinese).
[29] 王振. 基于扩展有限元法的连续管裂纹扩展研究[D].荆州:长江大学,2019:20. WANG Z. Crack propagation of coiled tubing based on extended finite element method[D]. Jingzhou:Yangtze University,2019:20(in Chinese).
[30] 师昌绪, 李恒德, 周廉. 材料科学与工程手册(上卷)[M]. 北京:化学工业出版社,2004:349-351. SHI C X, LI H D, ZHOU L. Materials science and engineering handbook (Volume 1)[M].Beijing:Chemical Industry Press, 2004:349-351(in Chinese).
文章导航

/