基于新型高维代理模型的气动外形设计方法研究

  • 赵欢 ,
  • 高正红 ,
  • 夏露
展开
  • 1. 中山大学
    2. 西北工业大学
    3. 西北工业大学航空学院

收稿日期: 2022-01-10

  修回日期: 2022-02-21

  网络出版日期: 2022-02-28

基金资助

国家自然科学青年基金

Research on Novel High-Dimensional Surrogate Model-Based Aerodynamic Shape Design Optimization Method

  • ZHAO Huan ,
  • GAO Zheng-Hong ,
  • XIA Lu
Expand

Received date: 2022-01-10

  Revised date: 2022-02-21

  Online published: 2022-02-28

摘要

随着现代飞行器性能需求的不断提高,飞行器精细化气动优化设计要求更高可信度的CFD数值分析以及更多的独立设计变量个数,使得基于代理模型的全局优化算法在超过一定设计变量个数后效率显著降低,难以满足复杂工程设计需求。而目前的高维代理模型过程复杂和计算花费高,缺乏对广泛工程问题的适应性。针对以上难题,本文提出了监督式非线性降维代理建模方法用于缓解代理优化过程中的高维变量设计难题。该方法将核主成分分析(非线性)降维模型与高斯回归过程模型统一训练,自适应构建新型高维代理模型,并随着优化过程不断学习和改进模型,从而建立了从高维输入到输出的准确映射,有效解决了传统高维代理模型训练花费高和适应性差等难题。然后基于该新型代理模型发展了适用于飞行器复杂气动设计的高维全局优化设计方法,并将其应用到AIAA优化小组发布的两个复杂跨音速优化算例中。通过与传统代理优化方法进行全面比较,证实了新方法能大幅提高飞行器高维变量全局优化效率和全局寻优能力

本文引用格式

赵欢 , 高正红 , 夏露 . 基于新型高维代理模型的气动外形设计方法研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2022.26924

Abstract

With the ever-increasing demands for the performance of modern aircrafts, the refined aerodynamic shape de-sign optimization of aircraft requires higher-fidelity computational fluid dynamics (CFD) numerical analysis and more independent design variables, causing the efficiency of surrogate-based global optimization algorithm significantly decreases after exceeding a certain number of design variables, which makes it difficult to meet the advanced demands for complex engineering problems. Besides, popular high-dimensional surrogate models encounter complex modeling process and prohibitive computational cost, and meantime they lack good adapta-bility to a wide range of engineering problems. To solve the above issues, a supervised nonlinear dimension-reduction surrogate modeling (SN-DRSM) method is proposed to alleviate the problem of high-dimensional variable in the process of surrogate-based design optimization. In this method, as the kernel principal compo-nent analysis (KPCA) nonlinear dimension-reduction model and Gaussian regression process model are inte-grated and trained as a whole, a new high-dimensional surrogate model is constructed adaptively, with continu-ously being studied in depth and improved with the optimization process, so as to establish an accurate mapping from high-dimensional inputs to outputs, which effectively solves the problems of high training cost and poor adaptability of traditional high-dimensional surrogate models. Then, an efficient high-dimensional global design optimization platform for complex aerodynamic configuration of aircraft is developed based on this novel sur-rogate model, and it is applied to two standard transonic optimization cases defined by AIAA aerodynamic op-timization group. Through a comprehensive comparison with the traditional surrogate optimization methods, it is proved that the new method can greatly improve the global optimization efficiency and ability of high-dimensional variables of aircraft

参考文献

[1] 赵欢. 基于代理模型的高效气动优化与气动稳健设计方法研究[D].西安: 西北工业大学,2020.
ZHAO H. Research on Efficient Surrogate-Based Aerodynamic Optimization and Robust Aerodynamic Design Methods[D].Xi'an:Northwestern Polytechnical University, 2020.
[2] 韩忠华,许晨舟,乔建领,等.基于代理模型的高效全局气动优化设计方法研究进展[J].航空学报, 2020, 41(3):623344.
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623344(in Chinese). doi: 10.7527/S1000-6893.2019.23344.
[3] HUANG J., GAO Z., ZHAO K., et al.Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J].Chinese Journal of Aeronautics,2010, 23 (5): 523-528.
[4] CHERNUKHIN O, ZINGG D W.Multimodality and global optimization in aerodynamic design[J]. AIAA journal,2013, 51 (6): 1342-1354.
[5] BONS N P, He X, Mader C A, et al.Multimodality in aerodynamic wing design optimization[J].AIAA Journal,2019, 57 (3): 1004-1018.
[6] POOLE D, ALLEN C, RENDALL T.Global optimization of wing aerodynamic optimization case exhibiting multimodality[J].Journal of Aircraft,2018, 55 (4): 1576-1591.
[7] ZHAO H, GAO Z, GAO Y, et al.Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J].Aerospace Science and Technology,2017, 68: 530-542.
[8] 赵欢,高正红,夏露.高速自然层流翼型高效气动稳健优化设计方法研究[J].航空学报,2021, 42(7): 124894.
ZHAO H, GAO Z H, XIA L, et al. Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124894 (in Chinese).
[9] ZHAO H, GAO Z.Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J].Engineering Computations,2019, 36 (3): 971-996.
[10] ZHAO H, GAO Z, XU F, et al.Review of Robust Aerodynamic Design Optimization for Air Vehicles[J].Archives of Computational Methods in Engineering,2019, 26 (3): 685-732.
[11] ZHAO K, GAO Z., HUANG J., et al.Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J].Chinese Journal of Aeronautics,2016, 29 (6): 1541-1552.
[12] QUEIPO N V, HAFTKA R T, SHYY W, et al.Surrogate-based analysis and optimization[J].Progress in aerospace sciences,2005, 41 (1): 1-28.
[13] ZHAO H, GAO Z, XU F, et al.An efficient adaptive forward–backward selection method for sparse polynomial chaos expansion[J].Computer Methods in Applied Mechanics and Engineering,2019, 355: 456-491.
[14] ZHAO H, GAO Z, XU F, et al.Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J].Structural and Multidisciplinary Optimization,2021, 64 (2): 829-858.
[15] LAURENCEAU J, SAGAUT P.Building efficient response surfaces of aerodynamic functions with kriging and cokriging[J].AIAA journal,2008, 46 (2): 498-507.
[16] HAN Z-H, ZHANG Y, Song C-X, et al.Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J].AIAA Journal,2017: 4330-4346.
[17] GUO L, NARAYAN A, ZHOU T.A gradient enhanced ?1-minimization for sparse approximation of polynomial chaos expansions[J].Journal of Computational Physics,2018, 367: 49-64.
[18] SOBOL I M J M M.Sensitivity estimates for nonlinear mathematical models[J].Mathematical modelling and computational experiments,1993, 1 (4): 407-414.
[19] SHAN S, WANG G G.Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J].Structural and Multidisciplinary Optimization,2010, 41 (2): 219-241.
[20] LI G, WANG S-W, RABITZ H, et al.Global uncertainty assessments by high dimensional model representations (HDMR)[J].Chemical Engineering Science,2002, 57 (21): 4445-4460.
[21] ROY P C, DEB K. High dimensional model representation for solving expensive multi-objective optimization problems[C].2016 IEEE Congress on Evolutionary Computation (CEC),2016: 2490-2497.
[22] DIEZ M, CAMPANA E F, STERN F.Design-space dimensionality reduction in shape optimization by Karhunen–Loève expansion[J].Computer Methods in Applied Mechanics and Engineering,2015, 283: 1525-1544.
[23] BERKOOZ G, HOLMES P, LUMLEY J L.The proper orthogonal decomposition in the analysis of turbulent flows[J].Annual review of fluid mechanics,1993, 25 (1): 539-575.
[24] MOHAMMADI A, RAISEE M.Efficient uncertainty quantification of stochastic heat transfer problems by combination of proper orthogonal decomposition and sparse polynomial chaos expansion[J].International Journal of Heat Mass Transfer,2019, 128: 581-600.
[25] MOHAMMADI A, RAISEE M.Stochastic field representation using bi-fidelity combination of proper orthogonal decomposition and Kriging[J].Computer Methods in Applied Mechanics and Engineering,2019, 357: 112589.
[26] VAN Der MAATEN L, POSTMA E, VAN Den Herik J.Dimensionality reduction: a comparative[J].J Mach Learn Res,2009, 10 (66-71): 13.
[27] CONSTANTINE P G, DOW E, WANG Q.Active subspace methods in theory and practice: applications to kriging surfaces[J].SIAM Journal on Scientific Computing,2014, 36 (4): A1500-A1524.
[28] GENG X, ZHAN D-C, ZHOU Z-H.Supervised nonlinear dimensionality reduction for visualization and classification[J].IEEE Transactions on Systems, Man, Cybernetics, Part B,2005, 35 (6): 1098-1107.
[29] LI J, CAI J, QU K.Surrogate-based aerodynamic shape optimization with the active subspace method[J].Structural and Multidisciplinary Optimization,2019, 59 (2): 403-419.
[30] GHOREISHI S F, FRIEDMAN S, ALLAIRE D L.Adaptive Dimensionality Reduction for Fast Sequential Optimization With Gaussian Processes[J].Journal of Mechanical Design,2019, 141 (7).
[31] TRIPATHY R K, BILIONIS I.Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification[J].Journal of Computational Physics,2018, 375: 565-588.
[32] GENEVA N, ZABARAS N.Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks[J].Journal of Computational Physics,2019, 383: 125-147.
[33] QIN T, WU K, XIU D.Data driven governing equations approximation using deep neural networks[J].Journal of Computational Physics,2019, 395: 620-635.
[34] LYU Z, KENWAY G K W, MARTINS J R R A.Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark[J].AIAA Journal,2015, 53 (4): 968-985.
[35] LIANG H, ZHU M, WU Z.Using cross-validation to design trend function in Kriging surrogate modeling[J].AIAA Journal,2014, 52 (10): 2313-2327.
[36] LEDOUX S T, VASSBERG J C, YOUNG D P, et al.Study Based on the AIAA Aerodynamic Design Optimization Discussion Group Test Cases[J].AIAA Journal,2015, 53 (7): 1-26.
[37] 赵欢, 高正红, 王超, et al.适用于高速层流翼型的计算网格研究[J].应用力学学报,2018, 35 (2): 351-357.
ZHAO H, GAO Z H, WANG C, et al. Research on the computing grid of high speed laminar airfoil[J]. Chinese Journal of Applied Mechanics, 2018, 35(2): 351-357. (in chinese).
[38] HAN Z, XU C, ZHANG L, et al.Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J].Chinese Journal of Aeronautics,2020, 33 (1): 31-47.
[39] WANG H, HAN Z-H, HAN S-Q, et al.Combining adjoint-based and surrogate-based optimizations for benchmark aerodynamic design problems[J].31st ICAS, 2018, paper no.2018-0715.
文章导航

/