[1] 赵欢. 基于代理模型的高效气动优化与气动稳健设计方法研究[D].西安: 西北工业大学,2020.
ZHAO H. Research on Efficient Surrogate-Based Aerodynamic Optimization and Robust Aerodynamic Design Methods[D].Xi'an:Northwestern Polytechnical University, 2020.
[2] 韩忠华,许晨舟,乔建领,等.基于代理模型的高效全局气动优化设计方法研究进展[J].航空学报, 2020, 41(3):623344.
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623344(in Chinese). doi: 10.7527/S1000-6893.2019.23344.
[3] HUANG J., GAO Z., ZHAO K., et al.Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J].Chinese Journal of Aeronautics,2010, 23 (5): 523-528.
[4] CHERNUKHIN O, ZINGG D W.Multimodality and global optimization in aerodynamic design[J]. AIAA journal,2013, 51 (6): 1342-1354.
[5] BONS N P, He X, Mader C A, et al.Multimodality in aerodynamic wing design optimization[J].AIAA Journal,2019, 57 (3): 1004-1018.
[6] POOLE D, ALLEN C, RENDALL T.Global optimization of wing aerodynamic optimization case exhibiting multimodality[J].Journal of Aircraft,2018, 55 (4): 1576-1591.
[7] ZHAO H, GAO Z, GAO Y, et al.Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J].Aerospace Science and Technology,2017, 68: 530-542.
[8] 赵欢,高正红,夏露.高速自然层流翼型高效气动稳健优化设计方法研究[J].航空学报,2021, 42(7): 124894.
ZHAO H, GAO Z H, XIA L, et al. Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124894 (in Chinese).
[9] ZHAO H, GAO Z.Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J].Engineering Computations,2019, 36 (3): 971-996.
[10] ZHAO H, GAO Z, XU F, et al.Review of Robust Aerodynamic Design Optimization for Air Vehicles[J].Archives of Computational Methods in Engineering,2019, 26 (3): 685-732.
[11] ZHAO K, GAO Z., HUANG J., et al.Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J].Chinese Journal of Aeronautics,2016, 29 (6): 1541-1552.
[12] QUEIPO N V, HAFTKA R T, SHYY W, et al.Surrogate-based analysis and optimization[J].Progress in aerospace sciences,2005, 41 (1): 1-28.
[13] ZHAO H, GAO Z, XU F, et al.An efficient adaptive forward–backward selection method for sparse polynomial chaos expansion[J].Computer Methods in Applied Mechanics and Engineering,2019, 355: 456-491.
[14] ZHAO H, GAO Z, XU F, et al.Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J].Structural and Multidisciplinary Optimization,2021, 64 (2): 829-858.
[15] LAURENCEAU J, SAGAUT P.Building efficient response surfaces of aerodynamic functions with kriging and cokriging[J].AIAA journal,2008, 46 (2): 498-507.
[16] HAN Z-H, ZHANG Y, Song C-X, et al.Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J].AIAA Journal,2017: 4330-4346.
[17] GUO L, NARAYAN A, ZHOU T.A gradient enhanced ?1-minimization for sparse approximation of polynomial chaos expansions[J].Journal of Computational Physics,2018, 367: 49-64.
[18] SOBOL I M J M M.Sensitivity estimates for nonlinear mathematical models[J].Mathematical modelling and computational experiments,1993, 1 (4): 407-414.
[19] SHAN S, WANG G G.Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J].Structural and Multidisciplinary Optimization,2010, 41 (2): 219-241.
[20] LI G, WANG S-W, RABITZ H, et al.Global uncertainty assessments by high dimensional model representations (HDMR)[J].Chemical Engineering Science,2002, 57 (21): 4445-4460.
[21] ROY P C, DEB K. High dimensional model representation for solving expensive multi-objective optimization problems[C].2016 IEEE Congress on Evolutionary Computation (CEC),2016: 2490-2497.
[22] DIEZ M, CAMPANA E F, STERN F.Design-space dimensionality reduction in shape optimization by Karhunen–Loève expansion[J].Computer Methods in Applied Mechanics and Engineering,2015, 283: 1525-1544.
[23] BERKOOZ G, HOLMES P, LUMLEY J L.The proper orthogonal decomposition in the analysis of turbulent flows[J].Annual review of fluid mechanics,1993, 25 (1): 539-575.
[24] MOHAMMADI A, RAISEE M.Efficient uncertainty quantification of stochastic heat transfer problems by combination of proper orthogonal decomposition and sparse polynomial chaos expansion[J].International Journal of Heat Mass Transfer,2019, 128: 581-600.
[25] MOHAMMADI A, RAISEE M.Stochastic field representation using bi-fidelity combination of proper orthogonal decomposition and Kriging[J].Computer Methods in Applied Mechanics and Engineering,2019, 357: 112589.
[26] VAN Der MAATEN L, POSTMA E, VAN Den Herik J.Dimensionality reduction: a comparative[J].J Mach Learn Res,2009, 10 (66-71): 13.
[27] CONSTANTINE P G, DOW E, WANG Q.Active subspace methods in theory and practice: applications to kriging surfaces[J].SIAM Journal on Scientific Computing,2014, 36 (4): A1500-A1524.
[28] GENG X, ZHAN D-C, ZHOU Z-H.Supervised nonlinear dimensionality reduction for visualization and classification[J].IEEE Transactions on Systems, Man, Cybernetics, Part B,2005, 35 (6): 1098-1107.
[29] LI J, CAI J, QU K.Surrogate-based aerodynamic shape optimization with the active subspace method[J].Structural and Multidisciplinary Optimization,2019, 59 (2): 403-419.
[30] GHOREISHI S F, FRIEDMAN S, ALLAIRE D L.Adaptive Dimensionality Reduction for Fast Sequential Optimization With Gaussian Processes[J].Journal of Mechanical Design,2019, 141 (7).
[31] TRIPATHY R K, BILIONIS I.Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification[J].Journal of Computational Physics,2018, 375: 565-588.
[32] GENEVA N, ZABARAS N.Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks[J].Journal of Computational Physics,2019, 383: 125-147.
[33] QIN T, WU K, XIU D.Data driven governing equations approximation using deep neural networks[J].Journal of Computational Physics,2019, 395: 620-635.
[34] LYU Z, KENWAY G K W, MARTINS J R R A.Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark[J].AIAA Journal,2015, 53 (4): 968-985.
[35] LIANG H, ZHU M, WU Z.Using cross-validation to design trend function in Kriging surrogate modeling[J].AIAA Journal,2014, 52 (10): 2313-2327.
[36] LEDOUX S T, VASSBERG J C, YOUNG D P, et al.Study Based on the AIAA Aerodynamic Design Optimization Discussion Group Test Cases[J].AIAA Journal,2015, 53 (7): 1-26.
[37] 赵欢, 高正红, 王超, et al.适用于高速层流翼型的计算网格研究[J].应用力学学报,2018, 35 (2): 351-357.
ZHAO H, GAO Z H, WANG C, et al. Research on the computing grid of high speed laminar airfoil[J]. Chinese Journal of Applied Mechanics, 2018, 35(2): 351-357. (in chinese).
[38] HAN Z, XU C, ZHANG L, et al.Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J].Chinese Journal of Aeronautics,2020, 33 (1): 31-47.
[39] WANG H, HAN Z-H, HAN S-Q, et al.Combining adjoint-based and surrogate-based optimizations for benchmark aerodynamic design problems[J].31st ICAS, 2018, paper no.2018-0715.