集群智能与协同控制

多四旋翼无人机编队保持与避碰控制

  • 杨明月 ,
  • 寿莹鑫 ,
  • 唐勇 ,
  • 刘畅 ,
  • 许斌
展开
  • 1. 西北工业大学 自动化学院,西安 710129;
    2. 中航(成都)无人机系统股份有限公司,成都 611731

收稿日期: 2022-01-07

  修回日期: 2022-01-25

  网络出版日期: 2022-02-28

基金资助

国家自然科学基金(61933010);四川省科技计划资助(2020YFG0472)

Multi-quadrotor UAVs formation maintenance and collision avoidance control

  • YANG Mingyue ,
  • SHOU Yingxin ,
  • TANG Yong ,
  • LIU Chang ,
  • XU Bin
Expand
  • 1. College of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
    2. AVIC (Chengdu) UAS Co., Ltd., Chengdu 611731, China

Received date: 2022-01-07

  Revised date: 2022-01-25

  Online published: 2022-02-28

Supported by

National Natural Science Foundation of China (61933010);Supported by Sichuan Science and Technology Program (2020YFG0472)

摘要

针对多四旋翼无人机的编队保持和防碰撞及机间通信问题,设计了一种基于虚拟结构和人工势场相结合的编队规划控制算法。以虚拟领导者为核心基于期望的相对位置信息设计虚拟结构队形,结合人工势场斥函数实现虚拟结构质点的防碰撞以及维持通信距离功能,并解决了可能存在的局部死锁问题,基于反步法实现无人机对期望轨迹的跟踪功能。通过Lyapunov稳定性分析证明闭环系统的一致最终有界。多架四旋翼无人机的仿真结果表明,散乱分布的无人机可以实现无碰撞的快速编队形成,并在保持队形行进过程中灵活地完成对静态和动态障碍物的有效规避,同时在发现目标后迅速变换紧密编队队形,充分验证了所设计算法对于编队控制的可靠性及有效性。

本文引用格式

杨明月 , 寿莹鑫 , 唐勇 , 刘畅 , 许斌 . 多四旋翼无人机编队保持与避碰控制[J]. 航空学报, 2022 , 43(S1) : 726913 -726913 . DOI: 10.7527/S1000-6893.2022.26913

Abstract

For the problems of formation maintenance and anti-collision of multi-quadrotor UAVs and communication issues between UAVs, a formation planning control algorithm is designed based on a combination of virtual structure and artificial potential field. The virtual leader is used as the core to design the virtual structure formation which is based on the expected relative position information. The artificial potential field repulsion function is used to realize the anti-collision function and maintain the communication distance function of virtual structure particles, and the possible local deadlock problem is solved. The anti-stepping method is used to realize desired trajectory tracking by the UAVs. The uniformly ultimately bounded of the final value of the closed-loop system is proved by Lyapunov stability analysis. The simulation results of multiple quadrotor UAVs show that scattered UAVs can achieve rapid formation without collision, and flexibly complete effective avoidance of static and dynamic obstacles while maintaining the formation, and quickly change to a tight formation after discovering the target at the same time, verifying the reliability and effectiveness of the proposed algorithm for formation control.

参考文献

[1]
[2]
[3] LI Z P, XIAN B. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure[J]. Control Theory & Applications, 2020, 37(11): 2423-2431 (in Chinese). 李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制[J]. 控制理论与应用, 2020, 37(11): 2423-2431.
[4] QIU H X, DUAN H B, FAN Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks[J]. Control Theory & Applications, 2015, 32(10): 1298-1304 (in Chinese). 邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用, 2015, 32(10): 1298-1304.
[5] ZONG Q, WANG D D, SHAO S K, et al. Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49(3): 1-14 (in Chinese). 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49(3): 1-14.
[6] YANG Z C, ZHENG S Q, LIU F, et al. Adaptive output feedback control for fractional-order multi-agent systems[J]. ISA Transactions, 2020, 96: 195-209.
[7]
[8]
[9] LOPEZ-GONZALEZ A, FERREIRA E D, HERNANDEZ-MARTINEZ E G, et al. Multi-robot formation control using distance and orientation[J]. Advanced Robotics, 2016, 30(14): 901-913.
[10] LI L Q, WANG Y T. Adaptive formation control of AUVs in the presence of parametric model uncertainty[J]. Ship Electronic Engineering, 2015, 35(1): 154-157 (in Chinese). 李乐强, 王银涛. 模型参数不确定条件下的自主水下航行器(AUV)自适应编队控制研究[J]. 舰船电子工程, 2015, 35(1): 154-157.
[11]
[12] ZHOU J K, HU Q L, MA G F, et al. Cooperative attitude and translation control of satellite formation flying using consensus algorithm[J]. Systems Engineering and Electronics, 2011, 33(4): 825-832 (in Chinese). 周稼康, 胡庆雷, 马广富, 等. 基于一致性算法的卫星编队姿轨耦合的协同控制[J]. 系统工程与电子技术, 2011, 33(4): 825-832.
[13]
[14]
[15] ZHANG X L, YANG Y X, XIE Y C. Application of improved ant colony algorithm in robot path planning[J]. Computer Engineering and Applications, 2020, 56(2): 29-34 (in Chinese). 张晓莉, 杨亚新, 谢永成. 改进的蚁群算法在机器人路径规划上的应用[J]. 计算机工程与应用, 2020, 56(2): 29-34.
[16] SANG H Q, YOU Y S, SUN X J, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223: 108709.
[17] WANG N, XU H W, LI C Z, et al. Hierarchical path planning of unmanned surface vehicles: a fuzzy artificial potential field approach[J]. International Journal of Fuzzy Systems, 2021, 23(6): 1797-1808.
[18] YANG W L, WU P, ZHOU X Q, et al. Improved artificial potential field and dynamic window method for amphibious robot fish path planning[J]. Applied Sciences, 2021, 11(5): 2114.
[19] FAN Q H, HU S Q. Design of loop coupling synchronous controller for quadrotor transport formation[J]. Electronics Optics & Control, 2021, 28(6): 57-63 (in Chinese). 范琦涵, 胡士强. 四旋翼运输编队的环形耦合同步控制器设计[J]. 电光与控制, 2021, 28(6): 57-63.
[20] GUO Y, WANG D W, DENG Y. Modeling and flight control of quadrotor[J]. Transducer and Microsystem Technologies, 2017, 36(11): 38-41 (in Chinese). 郭勇, 汪大伟, 邓宇. 四旋翼飞行器建模及其运动控制[J]. 传感器与微系统, 2017, 36(11): 38-41.
文章导航

/