流体力学与飞行力学

考虑三维流动效应的自然层流短舱压力分布反设计

  • 刘红阳 ,
  • 宋超 ,
  • 罗骁 ,
  • 周铸 ,
  • 吕广亮
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所,绵阳 621000
E-mail: zhouzhu@tom.com

收稿日期: 2021-12-27

  修回日期: 2022-01-26

  录用日期: 2022-02-15

  网络出版日期: 2022-02-28

基金资助

国家级项目

Inverse design of pressure distribution for natural laminar flow nacelle considering 3D flow effects

  • Hongyang LIU ,
  • Chao SONG ,
  • Xiao LUO ,
  • Zhu ZHOU ,
  • Guangliang LYU
Expand
  • Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: zhouzhu@tom.com

Received date: 2021-12-27

  Revised date: 2022-01-26

  Accepted date: 2022-02-15

  Online published: 2022-02-28

Supported by

National Level Project

摘要

针对三维流动效应下非轴对称自然层流(NLF)短舱设计困难的问题,发展了一种基于机器学习技术的压力分布反设计方法。短舱参数化建模使用自由曲面变形技术(FFD),通过求解RANS方程和基于SST(Shear Stress Transport)湍流模型的γReθt¯转捩模型实现自然转捩预测,利用生成拓扑映射(GTM)模型建立短舱外形及其压力分布数据集与低维隐空间变量的映射关系,全局优化算法在隐空间高效寻优,获得与目标压力分布匹配的短舱气动外形,实现自然层流短舱的反设计。GTM模型建立了数据集在高低维度间的高精度映射关系,优化设计过程中无需反复调用CFD求解器,设计效率大幅提升。利用该方法对通气短舱进行三维优化设计,设计所得非轴对称短舱外表面的自然层流区最大长度达当地弦长的40.5%,比优化前延长了12.2%,验证了该方法在考虑三维流动效应下NLF短舱的优化设计能力。

本文引用格式

刘红阳 , 宋超 , 罗骁 , 周铸 , 吕广亮 . 考虑三维流动效应的自然层流短舱压力分布反设计[J]. 航空学报, 2023 , 44(5) : 126862 -126862 . DOI: 10.7527/S1000-6893.2022.26862

Abstract

An inverse design method of pressure distribution based on machine learning technology is developed aiming at the design difficulty of non-axisymmetric Natural Laminar Flow (NLF) nacelles under the three-dimensional flow effect. The Free Form Deformation (FFD) technology is used for the parametric modeling of the nacelle. Natural transition prediction is realized by solving the RANS equation and transition model γReθt¯ based on the SST (Shear Stress Transport) turbulence model. The mapping relationship between the high dimensional data set and the low dimensional hidden space variables is established with the Generative Topological Mapping (GTM) model. The global optimization algorithm efficiently optimizes in the hidden space, obtaining the aerodynamic shape of the nacelle matching the target pressure distribution, thereby realizing the inverse design of the natural laminar flow nacelle. The GTM model establishes a high-precision mapping relationship between the high and low dimensions of the data set, hence requiring no repeated calling of the CFD solver in the optimization design process, significantly improving the design efficiency. The three-dimensional optimization of the ventilation nacelle is then conducted with this method. The maximum length of the natural laminar flow area on the outer surface is 40.5% of the local chord length with the extension of 12.2%, verifying the optimization design ability of the NLF nacelle considering the three-dimensional flow effect.

参考文献

1 REDEKER G, HORSTMANN K H, KOSTER H, et al. Investigations on high Reynolds number laminar flow airfoils[J]. Journal of Aircraft198825(7): 583-590.
2 LIN Y J, ROBINSON T, EARLY J, et al. Implementation of Menter's transition model on an isolated natural laminar flow nacelle[J]. AIAA Journal201149(4): 824-835.
3 HOLMES B J, OBARA C J, YIP L P. Natural laminar flow experiments on modern airplane surfaces: NASA TP-2256[R]. Washington, D. C.: NASA, 1984.
4 YOUNGHANS J, LAHTI D. Analytical and experimental studies on natural laminar flow nacelles[C]∥ 22nd Aerospace Sciences Meeting. Reston: AIAA, 1984.
5 RADESPIEL R, HORSTMANN K H, REDEKER G. Feasibility study on the design of a laminar flow nacelle[J]. Journal of Aircraft199027(11): 959-965.
6 RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology19982(1): 1-12.
7 VERMEERSCH O, BOUTEILLER X. Numerical study of laminar nacelles: natural and hybrid laminar flow designs[J]. International Journal of Engineering Systems Modelling and Simulation20146(3/4): 191.
8 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报201429(10): 2311-2320.
  HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power201429(10): 2311-2320 (in Chinese).
9 LI S Y, ZHONG Y J. A turbofan-engine nacelle shape design and optimization method for natural laminar flow control[C]∥ Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016.
10 ZHONG Y J, LI S Y. A 3D shape design and optimization method for natural laminar flow nacelle[C]∥ Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017.
11 杜玺, 闫海津, 吴宇昂, 等. 跨声速自然层流短舱气动设计和风洞试验研究[J]. 航空科学技术201930(9): 63-72.
  DU X, YAN H J, WU Y A, et al. Aerodynamic design and wind tunnel test of a transonic natural laminar flow nacelle[J]. Aeronautical Science & Technology201930(9): 63-72 (in Chinese).
12 WANG S Y, SUN G, LI C H. Natural laminar flow optimization of transonic nacelle based on differential evolution algorithm[J]. Journal of Aerospace Engineering201932(4): 06019001.1-06019001.10.
13 孟晓轩, 白俊强, 张美红, 等. 基于双e N 方法的短舱层流转捩影响因素[J]. 航空学报201940(11): 123040.
  MENG X X, BAI J Q, ZHANG M H, et al. Laminar transition influencing factors of nacelle based on double e N method[J]. Acta Aeronautica et Astronautica Sinica201940(11): 123040 (in Chinese).
14 曹凡, 胡骁, 张美芳, 等. 高雷诺数下跨声速自然层流短舱优化设计[J]. 航空动力学报202136(8): 1729-1739.
  CAO F, HU X, ZHANG M F, et al. Transonic natural laminar flow nacelle optimization design at high Reynolds number[J]. Journal of Aerospace Power202136(8): 1729-1739 (in Chinese).
15 胡骁. 大涵道比发动机层流短舱优化设计及转捩不确定性研究[D]. 南京: 南京航空航天大学, 2020: 24-28.
  HU X. Optimization design and transition uncertainty of laminar flow nacelle with large bypass ratio engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 24-28 (in Chinese).
16 BISHOP C M, SVENSéN M, WILLIAMS C K I. GTM: The generative topographic mapping[J]. Neural Computation199810(1): 215-234.
17 KANEKO H. Sparse generative topographic mapping for both data visualization and clustering[J]. Journal of Chemical Information and Modeling201858(12): 2528-2535.
18 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000.
  ZHU X X. Free form deformation technology[M]. Beijing: Science Press, 2000 (in Chinese).
19 LIU H Y, HUANG J T, ZHONG Q, et al. Hybrid unstructured mesh deformation based on massive parallel processors[M]∥Lecture notes in electrical engineering. Singapore: Springer Singapore, 2019: 1398-1411.
20 MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—part I: Model formulation[J]. Journal of Turbomachinery2006128(3): 413.
21 乔磊, 白俊强, 华俊, 等. γ ? R e θ t ˉ 转捩模型的改进和验证[J]. 航空动力学报201530(10): 2488-2497.
  QIAO L, BAI J Q, HUA J, et al. Improvement and verification of γ ? R e θ t ˉ transition model[J]. Journal of Aerospace Power201530(10) :2488-2497 (in Chinese).
22 KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft200845(1): 142-158.
文章导航

/