综述

民用轻小型无人机碰撞安全特性研究进展

  • 白春玉 ,
  • 郭亚周 ,
  • 刘小川 ,
  • 王亚锋 ,
  • 王计真 ,
  • 秦庆华
展开
  • 1. 西安交通大学 航天航空学院 机械结构强度与振动国家重点实验室, 西安 710049;
    2. 中国飞机强度研究所 结构冲击动力学航空科技重点实验室, 西安 710065

收稿日期: 2021-12-17

  修回日期: 2022-03-03

  网络出版日期: 2022-02-28

基金资助

国家重点研发计划(2021YFF0601302)

Research progress of collision safety characteristics of civil light and small UAVs

  • BAI Chunyu ,
  • GUO Yazhou ,
  • LIU Xiaochuan ,
  • WANG Yafeng ,
  • WANG Jizhen ,
  • QIN Qinghua
Expand
  • 1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China;
    2. Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, China Aircraft Strength Research Institute, Xi'an 710065, China

Received date: 2021-12-17

  Revised date: 2022-03-03

  Online published: 2022-02-28

Supported by

National Key R&D Program of China(2021YFF0601302)

摘要

民用轻小型无人机碰撞伤人、干扰甚至碰撞民航飞机的事件频发,使得其碰撞安全问题成为各国学者研究的热点技术之一。本文分析了轻小型无人机运营中的碰撞安全风险诱因,从无人机碰撞民航飞机和碰撞人员2类场景出发,阐述了轻小型无人机碰撞安全分析方法和试验方法的研究概况,以及典型的无人机碰撞安全准则及损伤分级方法。最后,对轻小型无人机碰撞安全技术研究的发展进行了展望。

本文引用格式

白春玉 , 郭亚周 , 刘小川 , 王亚锋 , 王计真 , 秦庆华 . 民用轻小型无人机碰撞安全特性研究进展[J]. 航空学报, 2022 , 43(6) : 526832 -526832 . DOI: 10.7527/S1000-6893.2022.26832

Abstract

Light and small civil UAVs induced accidents happened frequently, such as injuring people by colliding and interfering, even crashing into commercial aircraft, which made the UAVs collision safety a research hotspot by scholars from all over the world. This article analyzed the collision safety risk incentives in the operation of light and small UAVs. Based on two UAVs collision scenarios where drones collide with civil aircraft and people, this paper summarized the collision safety analysis and test methods of light and small UAVs, as well as the collision safety criteria and the damage classification approach. Finally, the collision safety research development of light and small UAVs is prospected.

参考文献

[1] JENKINS D, VASIGH B. The economic impact of unmanned aircraft systems integration in the United States[R]. Blacksburg:Association for Unmanned Vehicle Systems International (AUVSI), 2013.
[2] WOLF H. Comparing FAA activities the economic and regulatory state of unmanned aircraft systems & commercial space flight[C]//2014 IEEE Aerospace Conference. Piscataway:IEEE Press, 2014:1-11.
[3] EASA. Drone collision task force:04-10-16[R]. EASA, 2016.
[4] 闫少琨. 无人机运行安全风险评价[D]. 天津:中国民航大学, 2018. YAN S K. Evaluating the risk of unmanned aircraft operation[D]. Tianjin:Civil Aviation University of China, 2018(in Chinese).
[5] CLOTHIER R A, WALKER R A. Safety risk management of unmanned aircraft systems[M]. Netherlands:Springer, 2015.
[6] MULERO-PÁZMÁNY M, JENNI-EIERMANN S, STREBEL N, et al. Unmanned aircraft systems as a new source of disturbance for wildlife:A systematic review[J]. PLoS One, 2017, 12(6):e0178448.
[7] RUCHTI J, SENKBEIL R, CARROLL J, et al. Unmanned aerial system collision avoidance using artificial potential fields[J]. Journal of Aerospace Information Systems, 2014, 11(3):140-144.
[8] ALEXANDER R. Potential damage assessment of a mid-air collision with a small UAV[R]. Civil Aviation Safety Authority of Australian, 2013.
[9] Joint Authorities for Rule making of Unmanned Systems. Guidelines on specific operations risk assessment(SORA)[P].2019-01-30.
[10] FAA.Small unmanned aircraft regulati-ons:Part 107[S]. Washington, D.C.:FAA, 2016.
[11] 刘菲, 吕人力. 民用无人机运行管理立法分析与建议[J]. 科技导报, 2020, 38(16):15-28. LIU F, LV R L. The legislation for unmanned aircraft operation and suggestions for improvement[J]. Science & Technology Review, 2020, 38(16):15-28(in Chinese).
[12] 李相民, 薄宁, 代进进. 基于模型预测控制的多无人机避碰航迹规划研究[J]. 西北工业大学学报, 2017, 35(3):513-522. LI X M, BO N, DAI J J. Study on collision avoidance path planning for multi-UAVs based on model predictive control[J]. Journal of Northwestern Polytechnical University, 2017, 35(3):513-522(in Chinese).
[13] LIN W M, TU C S, YANG R F, et al. Particle swarm optimisation aided least-square support vector machine for load forecast with spikes[J]. IET Generation, Transmission & Distribution, 2016, 10(5):1145-1153.
[14] WANG J J, KUMBASAR T. Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1):247-257.
[15] LINDQVIST B, MANSOURI S S, AGHA-MOHAMMADI A A, et al. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles[J]. IEEE Robotics and Automation Letters, 2020, 5(4):6001-6008.
[16] SERRADELL L, WAGUÉ S, MOUREAU A, et al. Enhanced passive safety surveillance of a trivalent and a quadrivalent influenza vaccine in Denmark and Finland during the 2018/2019 season[J]. Human Vaccines & Immunotherapeutics, 2021, 17(4):1205-1210.
[17] HLOW K. An initial parametric study of weight and energy thresholds for falling Unmanned Aerial Vehicles (UAVs)[C]//4th Workshop on Research, Education and Development of Unmanned Aerial Systems (REDUAS), 2017.
[18] ZHANG Y J, HUANG Y J, CAO K, et al. A review of high precision finite element modelling methods for light and small UAS[J]. Journal of Physics:Conference Series, 2021, 1786(1):012041.
[19] ZHANG Y J, HUANG Y J, LIANG K, et al. High-precision modeling and collision simulation of small rotor UAV[J]. Aerospace Science and Technology, 2021, 118:106977.
[20] 网易航空网,无人机事故因机件故障,非人为失误[EB/OL].(2016-08-31)[2021-12-10].https://www.163.com/news/article/BVPV58Q2000181OH.html. Netease aviation network,UAV accidents are mostly caused by machine parts failure and non-human error.[EB/OL].(2016-08-31)[2021-12-10].https://www.163.com/news/article/BVPV58Q2000181OH.html (in Chinese).
[21] WILD G, MURRAY J, BAXTER G. Exploring civil drone accidents and incidents to help prevent potential air disasters[J]. Aerospace, 2016, 3(3):22.
[22] 张宏宏, 甘旭升, 李双峰, 等. 复杂低空环境下考虑区域风险评估的无人机航路规划[J]. 仪器仪表学报, 2021, 42(1):257-266. ZHANG H H, GAN X S, LI S F, et al. UAV route planning considering regional risk assessment under complex low altitude environment[J]. Chinese Journal of Scientific Instrument, 2021, 42(1):257-266(in Chinese).
[23] 中国新闻网. 女选手参加铁人三项赛,被摄像无人机砸中头部[EB/OL]. (2014-04-09)[2021-12-10]. https://www.chinanews.com.cn/gj/2014/04-09/6045021.shtml. China News Network. Female athletes in triathlon were hit in the head by camera drones[EB/OL]. (2014-04-09)[2021-12-10]. https://www.chinanews.com.cn/gj/2014/04-09/6045021.shtml (in Chinese).
[24] 黄颖杰. 民用轻小型无人机机体动力学建模与碰撞响应分析方法研究[D]. 西安:西北工业大学,2021. HUANG Y J. Research on dynamic modeling and collision response analysis method of civil light and small UAV[D]. Xi'an:Northwestern Polytechnical University, 2021(in Chinese).
[25] 川报观察客户端. 成都双流机场遭无人机入侵四天影响60架航班警方悬赏举报[EB/OL]. (2017-04-20)[2021-12-10]. http://www.takefoto.cn/viewnews-1131610.html Chuanbao Observation Client. Chengdu Shuangliu Airport was invaded by unmanned aerial vehicles for four days, which affected 60 flights. The police offered a reward for reporting[EB/OL]. (2017-04-20)[2021-12-10]. http://www.takefoto.cn/viewnews-1131610.html (in Chinese).
[26] 全球无人机网. 一架Embraer 190民航因与无人机碰撞而损坏[EB/OL]. (2019-12-19)[2021-12-10]. https://www.81uav.cn/uav-news/201912/19/67736.html. Global UAV Network. An Embraer 190 civil aviation aircraft was damaged due to collision with a UAV[EB/OL]. (2019-12-19)[2021-12-10]. https://www.81uav.cn/uav-news/201912/19/67736.html (in Chinese).
[27] 郭亚周, 刘小川, 郭军, 等. 微型无人机和鸟体撞击飞机风挡玻璃对比实验[J]. 实验力学, 2020, 35(1):167-173. GUO Y Z, LIU X C, GUO J, et al. Comparative experiment of aircraft windshield glass subjected to micro-UAV and bird body impact[J]. Journal of Experimental Mechanics, 2020, 35(1):167-173(in Chinese).
[28] 蒋皓静, 刘卫, 杨玉斋, 等. 消费型锂离子电池安全试验研究浅析[J]. 标准科学, 2021(6):92-98. JIANG H J, LIU W, YANG Y Z, et al. Experimental study on safety of soft packed lithium battery in consumer products[J]. Standard Science, 2021(6):92-98(in Chinese).
[29] ASSURE. FAA sUAS COE task A3 UAS airborne collision hazard severity evaluation[R]. Washington, D.C.:FAA, 2017.
[30] MENG X H, SUN Y J, YU J Y, et al. Dynamic response of the horizontal stabilizer during UAS airborne collision[J]. International Journal of Impact Engineering, 2019, 126:50-61.
[31] RATTANAGRAIKANAKORN B, GRANSDEN D I, SCHUURMAN M, et al. Multibody system modelling of unmanned aircraft system collisions with the human head[J]. International Journal of Crashworthiness, 2020, 25(6):689-707.
[32] LIU H, MAN M H C, NG B F, et al. Airborne collision severity study on engine ingestion caused by harmless-categorized drones[C]//AIAA Scitech 2021 Forum. Reston:AIAA, 2021:1263.
[33] DRUMOND T, GRECO M, CIMINI C. Evaluation of increase weight in a wing fixed leading edge design to support UAS impact[C]//Proceedings of the 10th Aerospace Technology Congress, 2019.
[34] LU X H, LIU X C, LI Y L, et al. Simulations of airborne collisions between drones and an aircraft windshield[J]. Aerospace Science and Technology, 2020, 98:105713.
[35] ASSURE. A4 final report:UAS ground collision severity evaluation[R]. Washington, D.C.:FAA, 2017.
[36] ASSURE. A14 final report:UAS ground collision severity evaluation 2017-2019[R]. Washington, D.C.:FAA, 2019.
[37] LOW K H. An initial parametric study of weight and energy thresholds for falling unmanned aerial vehicles (UAVs)[C]//2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). Piscataway:IEEE Press, 2017:240-245.
[38] KOH C H, LOW K H, LI L, et al. Weight threshold estimation of falling UAVs (Unmanned Aerial Vehicles) based on impact energy[J]. Transportation Research Part C:Emerging Technologies, 2018, 93:228-255.
[39] 王家伟. 人体胸部有限元模型建模及无人机碰撞工况损伤研究[D]. 北京:北京交通大学, 2020. WANG J W. Development of human thorax finite element model and injury investigation under UAV collision condition[D]. Beijing:Beijing Jiaotong University,2020(in Chinese).
[40] 郑奎涛, 龚明生, 蒋大鹏, 等. 基于火箭橇的无人机碰撞民用飞机试验技术研究[J]. 航空工程进展, 2020, 11(5):724-729. ZHENG K T, GONG M S, JIANG D P, et al. Research on the test technology of civil aircraft impacted by UAV based on rocket sled[J]. Advances in Aeronautical Science and Engineering, 2020, 11(5):724-729(in Chinese).
[41] CAMPOLETTANO E T, BLAND M L, GELLNER R A, et al. Ranges of injury risk associated with impact from unmanned aircraft systems[J]. Annals of Biomedical Engineering, 2017, 45(12):2733-2741.
[42] 中国民用航空局. 中国民用航空规章-运输类飞机适航标准:CCAR-25-R3[S]. 北京:中国民用航空局, 2001. CAAC. Airworthiness standard of transport aircraft:CCAR-25-R3[S].Beijing:CAAC, 2001(in Chinese).
[43] FAR. Airworthiness standards:Transport category airplanes:FAR25[S]. Washington, D.C.:FAA,2015.
[44] 李凯, 陆崑, 吴沂宁. 无人机撞击人体损伤定量评估方法研究[J]. 民航学报, 2020, 4(4):62-64. LI K, LU K, WU Y N. Unmanned aircraft system ground collision severity quantitative evaluation[J]. Journal of Civil Aviation, 2020, 4(4):62-64(in Chinese).
[45] GENNARELLI T, WODZIN E. The Abbreviated Injury Scale[R]. Des Plaines:American Association for Automotive Medicine,2005.
[46] HALLDIN P H,BROLIN K,KLEVIEN S.Investigation of conditions that affect neck compression-flexion injuries using numerical techniques[J]. Stapp Car Crash Journal, 2000,44(3):127-38.
[47] ADAMSON C, CYMET T. Ankle sprains:Evaluation, treatment, rehabilitation[J]. Maryland Medical Journal, 1997,46(10):530.
[48] CAMACHO D L,NIGHTINGA R W, MYERS B S.Surface friction in near-vertex head and neck impact increases risk of injury[J].Journal of Biomechanics, 1999,32(3):293-301.
[49] FAA. Micro unmanned aircraft systems aviation rule making committee recommendations final report[EB/OL]. (2016-04-01)[2021-12-10]. https://www.faa.gov/uas/resources/policy_library/media/Micro-UAS-ARCFINAL-Report.
[50] VERSACE J. A review of the severity index[C]//15th Stapp Car Crash Conference. Warrendale:SAE International, 1971.
[51] KLINICH K D. Techniques for developing child dummy protection reference values:NHTSA Docket No74-14[R].NHTSA Child Injury Protection Team, 1996.
[52] NEATHERY R F, KROELL C K, MERTZ H J. Prediction of thoracic injury from dummy responses[C]//SAE Technical Paper Series. Warrendale:SAE International, 1975.
[53] AENOR. Audio/video,information and communication technology equipment Part 1:Safety requirements:IEC62368-1[P]. AENOR, 2016.
文章导航

/