天基光学空间目标监测的初轨确定
收稿日期: 2021-09-29
修回日期: 2021-11-13
录用日期: 2022-02-14
网络出版日期: 2022-02-28
基金资助
国家自然科学基金(12073045);中国科学院青年创新促进会(2018183)
Initial orbit determination for space-based optical space surveillance
Received date: 2021-09-29
Revised date: 2021-11-13
Accepted date: 2022-02-14
Online published: 2022-02-28
Supported by
National Natural Science Foundation of China(12073045);Youth Innovation Promotion Association of Chinese Academy of Sciences(2018183)
针对天基空间目标光学监测时初轨确定(IOD)困难的问题,讨论了计算结果收敛到平凡解的本因,提出了消去平凡解的改进定轨流程。通过构建Laplace初轨确定方法的八次方程,分析了空间目标处于不同相对位置时方程系数和根的性质之间的关系。针对传统Laplace型初轨确定方法收敛到观测平台轨道的现象,给出了平凡解的数学表征和数值验证并提出了消除方法。由于基于Lambert问题利用距离搜索的初轨确定方法进行天基目标监测时对初值相对敏感,利用平凡解消除方法对Gooding法进行了改造,提出了一种适用于天基空间目标初轨确定的方法与流程。最后利用低轨目标监测的实测数据和高轨目标监测的仿真数据对方法进行了验证。结果表明本方法可有效解决平凡解和初值敏感问题,方法具有收敛速度快、精度可靠的特点,且具有普适性,易于理解,便于推广。
赵柯昕 , 甘庆波 , 刘静 . 天基光学空间目标监测的初轨确定[J]. 航空学报, 2023 , 44(1) : 326465 -326465 . DOI: 10.7527/S1000-6893.2022.26465
Initial Orbit Determination (IOD) is a difficult problem in space-based optical space surveillance. Based on a discussion of the reason for the convergence of the calculation results converge to the trivial solution, an improved IOD procedure that eliminates the trivial solution is proposed. By constructing the 8th polynomial equation of the Laplace method, the relationship between the properties of coefficients and roots when the space target is at different relative positions is analyzed. For the phenomenon that the classical Laplace-type IOD method converges to the orbit of observation platform, the mathematical characterization and numerical verification of the trivial solution are given, and an elimination method is proposed. Since the IOD method using distance search based on the Lambert problem is relatively sensitive to the initial value of space-based target monitoring, the Gooding method is modified by the trivial solution elimination method, and a new method suitable for IOD of space-based space targets is proposed. Finally, the method is verified by measured data of low Earth orbit target monitoring and simulation data of geosynchronous orbit target monitoring. The results show that this method can effectively solve the trivial solution and initial value sensitive problems. The method has the characteristics of fast convergence speed and reliable accuracy, and is thus universal, easy to understand and generalize.
1 | MILL J D, GUILMAIN B D. The MSX Mission Objectives [J]. Johns Hopkins APL Technical Digest, 1996, 17(1): 4-10. |
2 | BARNHART D, HUNTER R, WESTON A, et al. XSS-10 micro-satellite demonstration: AIAA-1998-5298[R]. Reston: AIAA, 1998. |
3 | RICHARDS R, TRIPP J, PASHIN S, et al. Advances in autonomous orbital rendezvous technology: the XSS-11 lidar sensor[C]∥Proceedings of the 57th International Astronautical Congress. Valencia: IAC, 2006. |
4 | SHARMA J, STOKES G H, VON BRAUN C, et al. Toward operational space-based space surveillance[J]. Lincoln Laboratory Journal, 2002, 13(2): 309–334. |
5 | Vallado D A, Griesbach J D. Simulating space surveillance networks[C]∥AAS/AIAA Astrodynamics Specialist Conference, Reston: AIAA, 2011. |
6 | DU J L, LEI X X, SANG J Z. A space surveillance satellite for cataloging high-altitude small debris[J]. Acta Astronautica, 2019, 157: 268-275. |
7 | SCOTT R, WALLACE B, SALE M, et al. Toward microsatellite-based space situational awareness[C]∥Advanced Maui Optical and Space Surveillance Conference, Hawaii: The Maui Economic Development Board, 2013: 1-10. |
8 | KOBLICK D, XU S, SHANKAR P. Publicly available geosynchronous (GEO) space object catalog for future space situational awareness (SSA) studies[C]∥Advanced Maui Optical and Space Surveillance Technologies Conference, Hawaii: The Maui Economic Development Board, 2017: 99. |
9 | SWARTWOUT M, KITTS C, TWIGGS R, et al. Mission results for Sapphire, a student-built satellite[J]. Acta Astronautica, 2008, 62(8-9): 521-538. |
10 | DAVIS T M. Operationally responsive space-the way forward [C]∥The 29th Annual AIAA/USU Conference on Small Satellites.Restion: AIAA, 2015. |
11 | SIMMS L, RIOT V, VRIES W, et al. Optical payload for the STARE mission: LLNL-CONF-474234[R]. Livermore: Lawrence Livermore National Laboratory, 2011. |
12 | 甘庆波, 马静远, 陆本魁, 等. 一种基于星间方向观测的初轨计算方法[J]. 宇航学报, 2007, 28(3): 619-622. |
GAN Q B, MA J Y, LU B K, et al. An initial orbit determination method using inter satellite angle measurement[J]. Journal of Astronautics, 2007, 28(3): 619-622 (in Chinese). | |
13 | 刘林, 张巍. 关于各种类型数据的初轨计算方法[J]. 飞行器测控学报, 2009, 28(3): 70-76. |
LIU L, ZHANG W. Initial orbit determination for different data types[J]. Journal of Spacecraft TT&C Technology, 2009, 28(3): 70-76 (in Chinese). | |
14 | 刘光明. 基于连续同伦算法的天基仅测角初定轨方法[J]. 飞行器测控学报, 2015, 34(5): 453-458. |
LIU G M. Space-based bearings-only initial orbit determination method based on homotopy continuation theory[J]. Journal of Spacecraft TT&C Technology, 2015, 34(5): 453-458 (in Chinese). | |
15 | 李骏, 安玮, 周一宇. 天基光学超短弧段测量的约束域分析方法[J]. 信号处理, 2009, 25(6): 911-915. |
LI J, AN W, ZHOU Y Y. Analysis methods in admissible region of too short arcs in space-based optical surveillance[J]. Signal Processing, 2009, 25(6): 911-915 (in Chinese). | |
16 | 刘磊. 基于天基监视的空间目标测向初轨确定研究[D]. 长沙: 国防科学技术大学, 2010: 44-52. |
LIU L. Study on the initial orbit determination of space targets with space-based surveillance[D]. Changsha: National University of Defense Technology, 2010: 44-52 (in Chinese). | |
17 | 章品, 桑吉章, 潘腾, 等. 应用距离搜索的低轨空间碎片初始轨道确定方法[J]. 航天器工程, 2017, 26(2): 22-28. |
ZHANG P, SANG J Z, PAN T, et al. Initial orbit determination method based on range searching for LEO space debris[J]. Spacecraft Engineering, 2017, 26(2): 22-28 (in Chinese). | |
18 | CHARLIER C V L. On multiple solutions in the determination of orbits from three observations[J]. Monthly Notices of the Royal Astronomical Society, 1910, 71(2): 120-124. |
19 | CHARLIER C V L. Second note on multiple solutions in the determination of orbits from three observations [J]. Monthly Notices of the Royal Astronomical Society, 1911, 71(5): 454-460. |
20 | GOODING R H. A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight[J].Celestial Mechanics and Dynamical Astronomy, 1996, 66(4): 387-423. |
21 | ESCOBAL P R. Methods of orbit determination[M]. New York: Wiley, 1965. |
22 | VALLADO D. Evaluating gooding angles-only orbit determination of space based space surveillance measurements[C]∥AAS Born Symposium. San Diego: AAS, 2010: 1-22. |
/
〈 |
|
〉 |