论文

含离散源损伤的复合材料壁板的剩余强度评估

  • 汪厚冰 ,
  • 王夏涵 ,
  • 林国伟 ,
  • 李新祥 ,
  • 杨胜春
展开
  • 中国飞机强度研究所 全尺寸飞机结构静力/疲劳航空科技重点实验室, 西安 710065

收稿日期: 2021-06-01

  修回日期: 2022-03-01

  网络出版日期: 2022-02-28

基金资助

民机科研项目(MJ-2015-F-038)

Residual strength evaluation of curved hat-stiffened composite panels with discrete-source damage

  • WANG Houbing ,
  • WANG Xiahan ,
  • LIN Guowei ,
  • LI Xinxiang ,
  • YANG Shengchun
Expand
  • Aeronautics Science and Technology Key Laboratory of Full Scale Aircraft Structure Statics and Fatigue, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2021-06-01

  Revised date: 2022-03-01

  Online published: 2022-02-28

Supported by

Civil Aircraft Scientific Research Project (MJ-2015-F-038)

摘要

为研究含离散源损伤的碳纤维增强树脂基复合材料曲面帽形加筋壁板在内压-轴压联合载荷下的剩余强度,对7长桁4框的复合材料曲面帽形加筋壁板进行了试验和分析。结果表明,与离散源损伤距离超过1个典型长桁间距壁板的蒙皮和长桁在轴压载荷作用下轴向应变分布较均匀;加载过程中,损伤区附近应力重新分配,降低了应力集中,离散源损伤可简化为圆孔;基于FD判据和经典层压板理论的计算方法能较准确的计算出含离散源损伤的曲面帽形加筋壁板在内压-轴压联合载荷下的剩余强度;并针对复合材料曲面帽形加筋壁板的结构特点、应变分布特征及破坏模式提出一种在内压-轴压联合载荷下轴向剩余强度的工程估算方法;计算结果均与试验结果吻合较好。

本文引用格式

汪厚冰 , 王夏涵 , 林国伟 , 李新祥 , 杨胜春 . 含离散源损伤的复合材料壁板的剩余强度评估[J]. 航空学报, 2022 , 43(6) : 525899 -525899 . DOI: 10.7527/S1000-6893.2022.25899

Abstract

Experiments and analysis on curved hat-stiffened composite panels with 7 stringers and 4 frames are conducted to investigate the residual strength of panels with discrete-source damage under combined internal pressure and axial compression. The research indicates that axial strain of stringers and skin is equal more than one stringer spacing from discrete-source damage, stress is redistributed near discrete-source damage, stress concentration reduces, and discrete-source damage can be simplified as a round hole. The research also proved that the method based on FD criterion and the classical laminate theory can be used to predict the residual strength of curved hat-stiffened composite panels with discrete-source damage under combined internal pressure and axial compression. An empirical method was proposed to estimate the residual strength of the curved hat-stiffened composite panels with discrete-source damage under combined internal pressure and axial compression based on the structural characteristics, strain distribution and failure mode. The calculated results are in good agreement with the experimental results.

参考文献

[1] Federal Aviation Administration, Department of Transportation. AC20-107B Subject:Composite aircraft structure, advisory circular[S]. Washington D.C.:Federal Aviation Administration, Department of Transportation, 2009:12-14.
[2] 矫桂琼,杜凯,杨成鹏,等.含离散源损伤复合材料加筋板的压缩特性[J]. 航空学报,2007, 28(6):1383-1388. JIAO G Q, DU K, YANG C P, et al. Compressive properties of stiffened composite panels with discrete-source damage[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1383-1388(in Chinese).
[3] 杜凯, 矫桂琼,王翔.含离散源损伤复合材料加筋板的拉伸特性[J]. 复合材料学报,2008, 25(4):181-186. DU K, JIAO G Q, WANG X. Tensile properties of stiffened composite panels with discrete-source damage[J]. Acta Materiae Compositae Sinica, 2008, 25(4):181-186(in Chinese).
[4] WALKER T H, MINGUET P J, FLYNN B W, et al. Advanced technology composite fuselage-structure performance:NASA CR-4732[R]. Washington, D.C.:NASA,1997.
[5] WANG J, LOTTS C, SLEIGHT D. Analysis of discrete-source damage progression in a tensile stiffened composite panel[C]//40th Structures, Structural Dynamics, and Materials Conference and Exhibit, 1999.
[6] ALEX V. Designing primary structures with stitched composites[C]//31 st Congress of the International Council of the Aeronautical Sciences, 2018.
[7] ANDREW B, JOHN G B J, ANDREW L, et al. Full-scale test and analysis results of a PRSEUS fuselage panel to assess damage containment features[C]//Aircraft Airworthiness & Sustainment Conference, 2012.
[8] XU X D, TAKEDA S I, AOKI Y, et al. Predicting notched tensile strength of full-scale composite structures from small coupons using fracture mechanics[J]. Composite Structures, 2017, 180:386-394.
[9] WANG J T, POE C C, AMBUR D R, et al. Residual strength prediction of damaged composite fuselage panel with R-curve method[J]. Composites Science and Technology, 2006, 66(14):2557-2565.
[10] LIANG L, JIA P R, JIAO G Q. Progressive failure study of discrete-source damage in stiffened composite panels[J]. Advanced Materials Research, 2011, 314-316:963-967.
[11] 李亮. 含离散源损伤复合材料结构失效行为研究[D]. 西安:西北工业大学, 2016:123-148. LI L. Failure behavior investigation of the composite structures with discrete resource damage[D]. Xi'an:Northwestern Polytechnical University, 2016:123-148(in Chinese).
[12] 李航,矫桂琼,王波. 含离散源损伤Z向增强复合材料加筋板压缩特性研究[J]. 机械强度,2012, 34(1):37-42. LI H,JIAO G Q,WANG B. Study on compressive properties of z-reinforced stiffened composite plate with discrete-source damage[J]. Journal of Mechanical Strength, 2012, 34(1):37-42(in Chinese).
[13] 李航,矫桂琼,赵龙,等. 含切口复合材料加筋板的压缩剩余强度研究[J]. 工程力学,2011, 28(8):133-137. LI H,JIAO G Q,ZHAO L, et al. Progressive failure analysis of stiffened composite plate with notch[J]. Engineering Mechanics, 2011, 28(8):133-137(in Chinese).
[14] 陈向明,张阿盈,柴亚南,等. 复合材料机翼壁板离散源损伤修理评估方法[J]. 机械强度,2017, 39(2):457-462. CHEN X M, ZHANG A Y, CHAI Y N, et al. Assessment method of the repaired aircraft composite wing panel with discrete-source damage[J]. Journal of Mechanical Strength,2017, 39(2):457-462(in Chinese).
[15] 陈向明,张阿盈,柴亚南,等. 复合材料机翼壁板离散源损伤修理技术研究[J]. 机械强度,2017, 39(3):551-556. CHEN X M, ZHANG A Y, CHAI Y N, et al. Investigation of repair technique for aircraft composite wing panel with discrete-source damage[J]. Journal of Mechanical Strength,2017,39(3):551-556(in Chinese).
[16] 陈向明,张阿盈,王力立,等. 复合材料加筋壁板修理后压缩性能试验研究[J]. 工程与试验,2017,57(1):9-13. CHEN X M, ZHANG A Y,WANG L L, et al. Experimental research on compression performance of repaired composite stiffened panel[J]. Engineering & Test, 2017, 57(1):9-13(in Chinese).
[17] 张阿盈,陈向明,王力立. 含离散源损伤复合材料加筋板剩余强度及其修理技术研究[J]. 工程与试验,2018,58(2):16-19. ZHANG A Y,CHEN X M, WANG L L. Study on residual strength of composite stiffened panel with discrete source damage and repair technique[J]. Engineering & Test, 2018,58(2):16-19(in Chinese).
[18] WHITNEY J M, NUISMER R J. Stress fracture criteria for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1974, 8(3):253-265.
[19] NUISMER R, WHITNEY J. Uniaxial failure of composite laminates containing stress concentrations[J]. Fracture Mechanics of composites, 1975, 9:117-142.
[20] VAIDYA R S, SUN C T. Fracture criterion for notched thin composite laminates[J]. AIAA Journal, 1997, 35(2):311-316.
[21] CHEN P H,SHEN Z,WANG J Y. A new method for compression after impact strength prediction of composite laminates[J]. Journal of Composite Materials, 2002, 36(5):589-610.
[22] 中国航空研究院. 复合材料结构设计手册[M]. 北京:航空工业出版社,2001:365-390. Institute of Aeronautics China. Handbook of composites structure design[M]. Beijing:Aviation Industry Press, 2001:365-390(in Chinese).
[23] 李仲,葛森,杨胜春,等. 含损伤缝合复合材料层压板压缩剩余强度估算方法[J]. 西北工业大学学报,2007,25(3):342-346. LI Z, GE S, YANG S C, et al. Prediction of compressive residual strength for stitched composite laminates with damage[J]. Journal of Northwestern Polytechnical University, 2007,25(3):342-346(in Chinese).
[24] 汪厚冰,李新祥,魏景超,等. 复合材料曲面帽形加筋壁板在内压-轴压联合载荷下的屈曲及承载性能[J]. 航空制造技术,2020,63(18):55-64. WANG H B, LI X X, WEI J C, et al. Buckling and post-buckling of curved hat-stiffened composite panels under combined internal pressure and axial compression[J]. Aeronautical Manufacturing Technology, 2020,63(18):55-64(in Chinese).
[25] 魏宏艳. 应力集中方法试验:AA-623S-2018-101-0025[R]. 西安:中国飞机强度研究所技术报告,2018. WEI H Y. Supplementary test report of stress concentration:AA-623S-2018-101-0025[R].Xi'an:Aircraft strength Research Institute of China, 2018(in Chinese).
[26] 邓凡臣. 应力集中方法补充试验报告:43-623S-2020-101-0015[R]. 西安:中国飞机强度研究所技术报告,2018. DENG F C. Test report of stress concentration, ASRI,43-623S-2020-101-0015[R]. Xi'an:Aircraft strength Research Institute of China, 2020(in Chinese).
[27] 汪厚冰,陈昊,雷安民,等. 复合材料帽形加筋壁板轴压屈曲与后屈曲性能[J]. 复合材料学报,2018,35(8):2014-2022. WANG H B,CHEN H,LEI A M,et al. Buckling and post-buckling performance of hat-stiffened composite panels under axial compression load[J]. Acta Materiae Compositae Sinica, 2018,35(8):2014-2022(in Chinese).
文章导航

/