固体力学与飞行器总体设计

弹性机翼阵风减缓控制策略风洞试验

  • 曾宪昂 ,
  • 赵冬强 ,
  • 李俊杰 ,
  • 严泽洲 ,
  • 刘成玉
展开
  • 航空工业第一飞机设计研究院 强度设计研究所,西安 710089
.E-mail:529047986@qq.com

收稿日期: 2021-12-27

  修回日期: 2022-01-05

  录用日期: 2022-02-07

  网络出版日期: 2022-02-18

基金资助

国家重点专项资助项目(MJ-2017-F-08)

Wind tunnel test on gust alleviation control strategies of elastic wing

  • Xian’ang ZENG ,
  • Dongqiang ZHAO ,
  • Junjie LI ,
  • Zezhou YAN ,
  • Chengyu LIU
Expand
  • Aircraft Strength Design and Research Department,AVIC The First Aircraft Institute,Xi’an 710089,China
E-mail: 529047986@qq.com

Received date: 2021-12-27

  Revised date: 2022-01-05

  Accepted date: 2022-02-07

  Online published: 2022-02-18

Supported by

Major Project Foundation of China(MJ-2017-F-08)

摘要

介绍了2种用于弹性机翼阵风减缓的控制策略。第1种控制策略是模态阻尼增强的阵风减缓(MDEGA),通过反馈翼尖振动速度驱动副翼做卸载偏转,从而减缓机翼的动载荷及振动。第2种控制策略是基于阵风感知的阵风抑制(GSBGS),由阵风探测器感知阵风速度并前馈给副翼做出偏转,利用副翼操纵力抵消阵风载荷。为验证2种控制策略的实施效果,以某弹性飞机缩比模型的大展弦比机翼为研究对象,进行了阵风载荷减缓原理风洞试验。试验结果表明2种控制器对机翼一弯模态的阵风响应减缓效果显著,翼根弯矩和翼尖过载峰值的减缓量均超过50%。与MDEGA相比GSBGS对峰值外频率点阵风响应的减缓更加有效。2种控制策略各具特点,可为工程设计提供参考:MDEGA等效于增加结构阻尼,不需要精确测量阵风,但受气动伺服弹性稳定性约束;GSBGS是开环控制,不改变飞机动态特性,但严重依赖于阵风探测的精度。

本文引用格式

曾宪昂 , 赵冬强 , 李俊杰 , 严泽洲 , 刘成玉 . 弹性机翼阵风减缓控制策略风洞试验[J]. 航空学报, 2023 , 44(4) : 226869 -226869 . DOI: 10.7527/S1000-6893.2022.26869

Abstract

Two control strategies for gust alleviation of elastic wing are introduced. The first control strategy is Modal Damping Enhanced Gust Alleviation (MDEGA). The ailerons are driven to deflect in unloading direction by feedback of wing tip vibration velocity, so as to alleviate the dynamic load and vibration of the wing. The other control strategy is called Gust Sensing Based Gust Suppression (GSBGS). The gust detector senses the gust velocity and feeds it forward to actuate ailerons. Then the control force is generated on aileron to counteract the gust load. In order to verify the implemental effect of these two control strategies, a principle wind tunnel test is conducted with the high-aspect-ratio wing of an elastic aircraft scale model as the research object. The experimental results showed that the two controllers both significantly reduced the gust response of the 1st wing bending mode and the peak reduction ratio in terms of wing root bending moment as well as wing tip acceleration exceeded 50%. Compared with MDEGA, GSBGS controller is more effective on gust alleviation at frequencies other than the peak frequency. The two strategies have their own characteristics which can provide reference for engineering design: MDEGA is equivalent to increasing structural damping which is independent of gust measurement but constrained by aeroservoelastic stability; GBSGS is essentially an open loop controller, which means its influence on aircraft dynamic behavior can be ignored, whereas it relies greatly on accurate gust detection.

参考文献

1 ALAM M, HROMCIK M, HANIS T. Active gust load alleviation system for flexible aircraft: Mixed feedforward/feedback approach[J]. Aerospace Science and Technology201541: 122-133.
2 刘澄澄, 赵永辉. 弹性飞机阵风减缓研究[J]. 航空计算技术201444(1): 78-82.
  LIU C C, ZHAO Y H. Research on gust response alleviation of an elastic aircraft[J]. Aeronautical Computing Technique201444(1): 78-82 (in Chinese).
3 MCKENZIE J. B-52 control configured vehicles ride control analysis and flight test[C]∥ 5th Aircraft Design, Flight Test and Operations Meeting. Reston: AIAA, 1973.
4 DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets197714(2): 81-86.
5 BRITT R T, JACOBSON S B, ARTHURS T D. Aeroservoelastic analysis of the B-2 bomber[J]. Journal of Aircraft200037(5): 745-752.
6 赵晶慧, 余圣晖. 民机阵风减缓技术分析[J]. 国际航空2011(11): 66-68.
  ZHAO J H, YU S H. Research on the gust alleviation technology[J]. International Aviation2011(11): 66-68 (in Chinese).
7 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报201536(4): 1011-1033.
  YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica201536(4): 1011-1033 (in Chinese).
8 REGAN C D, JUTTE C V. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft:NASA/TM-2012-216008 [R].Washington,D.C.:NASA,2012.
9 胡志明, 赵永辉. 基于前视突风探测信息的飞机载荷减缓控制[J]. 航空计算技术201545(4): 33-37.
  HU Z M, ZHAO Y H. Load alleviation for an aircraft based on forward looking gust information[J]. Aeronautical Computing Technique201545(4): 33-37 (in Chinese).
10 储玉飞, 刘东, 王珍珠, 等. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报202037(5): 580-600.
  CHU Y F, LIU D, WANG Z Z, et al. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics202037(5): 580-600 (in Chinese).
11 RABADAN G J, SCHMITT N P, PISTNER T, et al. Airborne lidar for automatic feedforward control of turbulent in-flight phenomena[J]. Journal of Aircraft201047(2): 392-403.
12 HAHN K U, KOENIG R. ATTAS flight test and simulation results of the advanced gust management system LARS[C]∥ Guidance, Navigation and Control Conference. Reston: AIAA, 1992.
13 陈洋, 王正杰, 郭士钧. 多控制面柔性翼飞行器阵风减缓研究[J]. 北京理工大学学报201737(12): 1229-1234, 1240.
  CHEN Y, WANG Z J, GUO S J. Gust alleviation of flexible wing aircraft with multiple control surfaces[J]. Transactions of Beijing Institute of Technology201737(12): 1229-1234, 1240 (in Chinese).
14 蒲利东, 谭申刚, 霍应元. 基于遗传算法的柔性飞翼布局阵风减缓设计[J]. 飞行力学201634(5): 40-43, 48.
  PU L D, TAN S G, HUO Y Y. Gust load alleviation of a flexible flying wing configuration based on genetic algorithm[J]. Flight Dynamics201634(5): 40-43, 48 (in Chinese).
15 ZHAO Y H, YUE C Y, HU H Y. Gust load alleviation on a large transport airplane[J]. Journal of Aircraft201653(6): 1932-1946.
16 SCOTT R, COULSON D, CASTELLUCCIO M, et al. Aeroservoelastic wind-tunnel tests of a free-flying, joined-wing SensorCraft model for gust load alleviation[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
17 陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报200930(12): 2250-2256.
  CHEN L, WU Z G, YANG C, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica200930(12): 2250-2256 (in Chinese).
18 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报201743(1): 184-192.
  YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics201743(1): 184-192 (in Chinese).
19 BI Y, XIE C C, AN C, et al. Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control[J]. Chinese Journal of Aeronautics201730(1): 292-309.
20 曾宪昂, 蒲利东, 李俊杰, 等. 基于超静定配平的机动载荷控制风洞试验[J]. 航空学报201738(5): 120596.
  ZENG X A, PU L D, LI J J, et al. Wind-tunnel test of maneuver load control based overdetermined trim[J]. Acta Aeronautica et Astronautica Sinica201738(5): 120596 (in Chinese).
21 赵卓林, 陈同银, 唐超, 等. 大展弦比飞机阵风降载策略与载荷测试分析[J]. 飞机设计201838(5): 17-20.
  ZHAO Z L, CHEN T Y, TANG C, et al. The gust load alleviation design and flight tests for an aircraft with large aspect ratio[J]. Aircraft Design201838(5): 17-20 (in Chinese).
22 杨阳, 杨超, 吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击202039(4): 106-112, 121.
  YANG Y, YANG C, WU Z G. A design of gust alleviation control system based on test of actuator's dynamic characteristics[J]. Journal of Vibration and Shock202039(4): 106-112, 121 (in Chinese).
文章导航

/