5颗导航用X射线脉冲星计时分析
收稿日期: 2021-10-29
修回日期: 2021-11-22
录用日期: 2022-02-13
网络出版日期: 2022-02-18
基金资助
国家重点研发计划(2021YFA0718500);中国科学院“空间科学”战略性先导科技专项(XDA15020503);国家自然科学基金(11903001);安徽省高校自然科学研究项目—重点项目(KJ2019A0787);安徽建筑大学博士启动基金(2019QDZ14)
Timing analysis for five navigation X-ray pulsars
Received date: 2021-10-29
Revised date: 2021-11-22
Accepted date: 2022-02-13
Online published: 2022-02-18
Supported by
National Key R&D Program of China(2021YFA0718500);Strategic Priority Program on Space Science, Chinese Academy of Sciences(XDA15020503);National Natural Science Foundation of China(11903001);Key Project of Natural Science Research Project of Universities of Anhui Province(KJ2019A0787);Doctor Foundation of Anhui Jianzhu University(2019QDZ14)
脉冲星计时特性分析是开展脉冲星导航和脉冲星时研究的基础,为其提供了精确的脉冲星计时模型参数和辐射特征。本文在系统总结脉冲星计时分析方法的基础上,选择了当前导航中应用最广泛的5颗脉冲星,并利用国内外在轨X射线观测卫星的最新观测数据对其分析,包括:“慧眼”硬X射线调制解调望远镜(HXMT)针对Crab脉冲星和PSR B1509-58的观测,中子星内部结构探测器(NICER)针对PSRs J1821-2452A、J1939+2134和J0030+0451的观测。通过对“慧眼”HXMT和NICER在2017-2021年高精度计时观测数据的分析,获得了较长时间段内脉冲星最新状态的自转特性和物理信息,一方面给定了脉冲星最新的、覆盖时间长、自转参数精度较高的X射线星历,证明在X射线波段也可独立给出较高精度的星历;另一方面建立了它们清晰显著的积分脉冲轮廓,其中在选定的能量段范围内3颗毫秒脉冲星的轮廓是当前最精确的,可为脉冲星导航研究提供最新的标准模板。本文仅对脉冲星的X射线数据进行了分析,未来利用国内外多个望远镜,开展多波段联合计时分析,将是脉冲星计时研究的重要方向。
闫林丽 , 葛明玉 , 庹攸隶 , 周庆勇 , 叶文韬 , 郑世界 , 韩大炜 . 5颗导航用X射线脉冲星计时分析[J]. 航空学报, 2023 , 44(3) : 526588 -526588 . DOI: 10.7527/S1000-6893.2022.26588
The timing analysis of pulsars, the basis for pulsar navigation and pulsar time research, provides accurate timing model parameters and radiation information of the pulsar. This work provides a systematic summary of pulsar timing analysis methods and timing analysis results of the five most widely used pulsars in current pulsar navigation including the Crab pulsar and PSR B1509-58 whose observations are made from the “Insight”Hard X-ray Modulation Telescope (HXMT) in China, and PSRs J1821-2452A, J1939+2134 and J0030 +0451 whose observations are made from the Neutron-star Interior Composition Explorer (NICER). Through the analysis of high precision timing observations from “Insight” HXMT and NICER in 2017-2021, the latest rotation characteristics and physical information of pulsars are obtained. On the one hand, the latest X-ray ephemeris of the pulsar with long period time and higher accuracy of rotation parameters are given, and it is proved that high precision ephemeris can be obtained independently in X-ray. On the other hand, clear and significant integrated pulse profiles for five pulsars are established, in which the pulse profiles of the three millisecond pulsars within the selected energy bands are the most accurate, which can provide the latest standard template for pulsar navigation research. This work only analyzes the X-ray observations of pulsars, and using multiple telescopes at home and abroad to carry out multi-band joint timing analysis will be an important direction of pulsar timing research in the future.
Key words: pulsar; navigation; X-ray; timing analysis; ephemeris
1 | MATSAKIS D, TAYLOR J, EUBANKS T. A statistic for describing pulsar and clock stabilities[J]. Astronomy and Astrophysics, 1997, 326: 924-928. |
2 | LYNE A G, GRAHAM-SMITH F. Pulsar astronomy[M]. 4th ed. Cambridge: Cambridge University Press, 2012. |
3 | HEWISH A, BELL S J, PILKINGTON J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature, 1968, 217(5130): 709-713. |
4 | JENET F A, HOBBS G B, VAN STRATEN W, et al. Upper bounds on the low‐frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects[J]. The Astrophysical Journal Letters, 2006, 653(2): 1571-1576. |
5 | ABBORT B P, ABBOTT R, ABBORT T D, et al. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data[J]. Physical Review D, 2017, 96(12): 122006. |
6 | PETIT G, TAVELLA P, THOMAS C. How can millisecond pulsars improve the long term stability of atomic time scales[J]. European Space Agency Special Publication, 1992, 340: 57-60. |
7 | PETIT G, TAVELLA P. Pulsars and time scales[J]. Astronomy and Astrophysics, 1996, 308(1): 290-298. |
8 | CHESTER, T J, BUTMAN, S A. Navigation using X-ray pulsars[J]. Telecommunications and Data Acquisition Progress Report, 1981, 63: 22-25. |
9 | ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[DB/OL]. arXiv preprint: 1908.01922, 2019. |
10 | HOBBS G, COLES W, MANCHESTER R N, et al. Development of a pulsar-based time-scale[J]. Monthly Notices of the Royal Astronomical Society, 2012, 427(4): 2780-2787. |
11 | 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015. |
ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: Theory and applications[M]. Beijing: Science Press, 2015 (in Chinese). | |
12 | KOWALSKI M, WOOD D, FRITZ G, et al. The unconventional stellar aspect (USA) experiment on ARGOS: AIAA-2001-4664[R]. Reston: AIAA, 2001. |
13 | NASA. NICER / ISS science nugget for November 17, 2017[EB/OL]. (2017-11-17)[2021-10-29]. . |
14 | 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学, 2017, 47(9): 120-128. |
ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(9): 120-128 (in Chinese). | |
15 | HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019: 5(1): 018003. |
16 | 周庆勇, 刘思伟, 郝晓龙, 等. 空间X射线观测确定脉冲星星历表参数精度分析[J]. 物理学报, 2016, 65(7): 368-377. |
ZHOU Q Y, LIU S W, HAO X L, et al. Analysis of measurement accuracy of ephemeris parameters for pulsar navigation based on the X-ray space observation[J]. Acta Physica Sinica, 2016, 65(7): 368-377 (in Chinese). | |
17 | 周庆勇, 魏子卿, 姜坤, 等. 一种聚焦型X射线探测器在轨性能标定方法[J]. 物理学报, 2018, 67(5): 050701. |
ZHOU Q Y, WEI Z Q, JIANG K, et al. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar[J]. Acta Physica Sinica, 2018, 67(5): 050701 (in Chinese). | |
18 | 周庆勇, 魏子卿, 姜坤, 等. 面向脉冲星导航的聚焦型X射线探测器测试标定方法研究[J]. 光子学报, 2020, 49(6): 27-39. |
ZHOU Q Y, WEI Z Q, JIANG K, et al. Research on the test and calibration method of a focusing X-ray detector for pulsar navigation[J]. Acta Photonica Sinica, 2020, 49(6): 27-39 (in Chinese). | |
19 | 周庆勇, 魏子卿, 闫林丽, 等. 面向综合定位导航授时系统的天地基脉冲星时间研究[J]. 物理学报, 2021, 70(13): 471-483. |
ZHOU Q Y, WEI Z Q, YAN L L, et al. Space/ground based pulsar timescale for comprehensive PNT system[J]. Acta Physica Sinica, 2021, 70(13): 471-483 (in Chinese). | |
20 | GRAVEN P H, COLLINS J T, SHEIKH S I, et al. XNAV for deep space navigation[C]∥31st Annual AAS Guidance and Control Conference. San Diego: ASS, 2008. |
21 | SHEIKH S .The use of variable celestial X-ray sources for spacecraft navigation[D].Maryland:University of Maryland, 2005. |
22 | ALVAREZ J S, PLANAS A U, PIERA N J V, et al. Feasibility study for a spacecraft navigation system relying on pulsar timing information: 18148/04/NL/MV[R]. Paris: ESA, 2004. |
23 | YU W H, SEMPER S R, MITCHELL J W, et al. NASA SEXTANT mission operations architecture[J]. Acta Astronautica, 2020, 176: 531-541. |
24 | Australia Telescope National Facility. NTNF pulsar catalogue[EB/OL]. (2014-04-26)[2021-10-29]. . |
25 | TUO Y L, LI X B, GE M Y, et al. In-orbit timing calibration of the insight-hard X-ray modulation telescope[DB/OL]. arXiv preprint: 2109.04709, 2021. |
26 | 中科院高能所计算中心. 硬X射线调制望远镜/软件介绍[EB/OL]. (2017-06-15)[2021-10-29]. . |
Center Computing, Institute of High Energy Research, Chinese Academy of Sciences. Hard X-ray modulation telescope/software introduction [EB/OL]. (2017-06-15)[2021-10-29]. . | |
27 | HXMT-HSDC. HXMT data analysis pipeline[EB/OL]. (2021-10-27) [2021-10-29]. . |
28 | 中科院高能所计算中心. 硬X射线调制望远镜/数据分析文档[EB/OL]. (2017-06-15)[2021-10-29]. . |
Center Computing, Institute of High Energy Research, Chinese Academy of Sciences. Hard X-ray modulation telescope/data analysis dowment [EB/OL]. (2017-06-15) [2021-10-29]. . | |
29 | ZHAO X F, ZHU Y X, HAN D W, et al. Studies on the time response distribution of Insight-HXMT/LE[J]. Journal of High Energy Astrophysics, 2019, 23: 23-28. |
30 | ZHOU D K, ZHENG S J, SONG L M, et al. The influence of the insight-HXMT/LE time response on timing analysis[J]. Research in Astronomy and Astrophysics, 2021, 21(1): 47-54. |
31 | NASA. NICER data analysis[EB/OL]. (2021-10-15)[2021-10-29]. . |
32 | ROWAN D M, GHAZI Z, LUGO L, et al. A NICER view of spectral and profile evolution for three X-ray-emitting millisecond pulsars[J]. The Astrophysical Journal Letters, 2020, 892(2): 150. |
33 | HOBBS G B, EDWARDS R T, MANCHESTER R N. Tempo2, a new pulsar-timing package - I. An overview[J]. Monthly Notices of the Royal Astronomical Society, 2006, 369(2): 655-672. |
34 | LEAHY D A, DARBRO W, ELSNER R F, et al. On searches for pulsed emission with application to four globular cluster X-ray sources-NGC 1851, 6441, 6624, and 6712[J]. The Astrophysical Journal Letters, 1983, 266: 160. |
35 | LEAHY D A, ELSNER R F, WEISSKOPF M C. On searches for periodic pulsed emission - the Rayleigh test compared to epoch folding[J]. The Astrophysical Journal Letters, 1983, 272: 256. |
36 | BERAN R J. Asymptotic theory of a class of tests for uniformity of a circular distribution[J]. The Annals of Mathematical Statistics, 1969, 40(4): 1196-1206. |
37 | JAGER O D, RAUBENHEIMER B, SWANEPOEL J. A powerful test for weak periodic signals with unknown light curve shape in sparse data[J]. Astronomy and Astrophysics, 1989, 221: 180-190. |
38 | ABDO A A, ACKERMANN M, AJELLO M, et al. Fermi large area telescope observations of the crab pulsar and nebula[J]. The Astrophysical Journal, 2010, 708(2): 1254-1267. |
39 | MOLKOV S, JOURDAIN E, ROQUES J P. Absolute timing of the crab pulsar with the integral/spi telescope[J]. The Astrophysical Journal Letters, 2010, 708(1): 403-410. |
40 | LYNE A, GRAHAM-SMITH F, WELTEVREDE P, et al. Evolution of the magnetic field structure of the crab pulsar[J]. Science, 2013, 342(6158): 598-601. |
41 | GE M Y, YAN L L, LU F J, et al. Evolution of the X-ray profile of the Crab pulsar[DB/OL]. arXiv preprint: 1909.04809,2019. |
42 | The University of Manchester. Pulsar glitches table[EB/OL]. (2014-11-12)[2021-10-29]. . |
43 | NELSON J, HILLS R, CUDABACK D, et al. Optical timing of the pulsar NP 0532 in the crab nebula[J]. The Astrophysical Journal Letters, 1970, 161: L235. |
44 | GE M Y, LU F J, QU J L, et al. X-ray phase-resolved spectroscopy of PSRs B 0531+21, B1509-58, and B0540-69 with rxte[DB/OL]. arXiv preprint: 1204.2199,2012. |
45 | TUO Y L, GE M Y, SONG L M, et al. Insight-HXMT observations of the crab pulsar[DB/OL]. arXiv preprint: 1906.03633,2019. |
46 | LOMMEN A N, ZEPKA A, BACKER D C, et al. New pulsars from an Arecibo drift scan search[J]. The Astrophysical Journal Letters, 2000, 545(2): 1007-1014. |
47 | ABDO A A, AJELLO M, ALLAFORT A, et al. The second Fermi large area telescope catalog of gamma-ray pulsars[J]. The Astrophysical Journal Supplement Series, 2013, 208(2): 17. |
48 | BOGDANOV S, LAMB F K, MAHMOODIFAR S, et al. Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. II. Emission from hot spots on a rapidly rotating neutron star[J]. The Astrophysical Journal Letters, 2019, 887(1): L26. |
49 | ARZOUMANIAN Z, BRAZIER A, BURKE-SPOLAOR S, et al. The NANOGrav 11-year data set: High-precision timing of 45 millisecond pulsars[J]. The Astrophysical Journal Letters Supplement Series, 2018, 235(2): 37. |
50 | BILOUS A V, PENNUCCI T T, DEMOREST P, et al. A broadband radio study of the average profile and giant pulses from PSR B1821-24A[J]. The Astrophysical Journal Letters, 2015, 803(2): 83. |
51 | SAITO Y, KAWAI N, KAMAE T, et al. Detection of magnetospheric X-ray pulsation from the millisecond pulsar B1821–24[J]. The Astrophysical Journal Letters, 1997, 477(1): L37-L40. |
52 | WEISSKOPF M C, BECKER W, SWARTZ D A, et al. Chandra X-ray observatory observations of the globular cluster M28 and its millisecond pulsar PSR B1821-24[J]. Nuclear Physics B-Proceedings Supplements, 2004, 132: 566-571. |
53 | BOGDANOV S, VAN DEN BERG M, SERVILLAT M, et al. ChandraX-ray observations of 12 millisecond pulsars in the globular cluster M28[J]. The Astrophysica Journal Letters, 2011, 730(2): 81. |
54 | GOTTHELF E V, BOGDANOV S. NuSTAR hard X-ray observations of the energetic millisecond pulsars PSR B1821-24, PSR B1937+21, and PSR J0218+4232[J]. The Astrophysical Journal Letters, 2017, 845(2): 159. |
55 | COGNARD I, BACKER D C. A micro-glitch in the millisecond pulsar PSR B1821-24 in M28[J]. The Astrophysical Journal Letters, 2004, 612(2): L125-L127. |
56 | CUSUMANO G, HERMSEN W, KRAMER M, et al. The phase of the radio and X-ray pulses of PSR B1937+21[J]. Nuclear Physics B-Proceedings Supplements, 2004, 132: 596-599. |
57 | TAKAHASHI M, SHIBATA S, TORII K, et al. Pulsed X-ray emission from the fastest millisecond pulsar: PSR B1937+21 with ASCA[J]. The Astrophysical Journal Letters, 2001, 554(1): 316-321. |
58 | NICASTRO L, CUSUMANO G, L?HMER O, et al. Beppo SAX observation of PSR B1937+21[J]. Astronomy & Astrophysics, 2004, 413(3): 1065-1072. |
59 | GUILLEMOT L, JOHNSON T J, VENTER C, et al. Pulsed gamma rays from the original millisecond and black widow pulsars: A case for caustic radio emission? [J]. The Astrophysical Journal Letters, 2012, 744(1): 33. |
60 | NG C Y, TAKATA J, LEUNG G C K, et al. High-energy emission of the first millisecond pulsar[J]. The Astrophysical Journal Letters, 2014, 787(2): 167. |
61 | VIVEKANAND M. The 31 yr rotation history of the millisecond pulsar J1939+2134 (B1937+21)[J]. The Astrophysical Journal Letters, 2020, 890(2): 143. |
62 | RILEY T E, WATTS A L, BOGDANOV S, et al. A NICER view of PSR J0030+0451: Millisecond pulsar parameter estimation[J]. The Astrophysical Journal Letters, 2019, 887(1): L21. |
63 | YAN L, GE M, LU F J, et al. Time evolution of the X-ray and γ-ray fluxes of the crab pulsar[J]. The Astrophysical Journal, 2018, 865(1): 21. |
/
〈 |
|
〉 |