论文

基于近场动力学理论的热障涂层热冲击开裂行为

  • 马玉娥 ,
  • 杨萌 ,
  • 孙文博
展开
  • 西北工业大学 航空学院, 西安 710072

收稿日期: 2021-10-29

  修回日期: 2022-03-15

  网络出版日期: 2022-02-18

基金资助

国家自然科学基金(91860128)

Cracking behavior of thermal barrier coating after thermal shock based on perdynamic theory

  • MA Yu'e ,
  • YANG Meng ,
  • SUN Wenbo
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-10-29

  Revised date: 2022-03-15

  Online published: 2022-02-18

Supported by

National Natural Science Foundation of China (91860128)

摘要

为研究热障涂层热冲击后损伤行为,设计并完成了陶瓷基热障涂层(TBC)的热冲击试验,研究了热障涂层损伤规律,分析了热冲击温度对损伤的影响。基于近场动力学(PD)理论,推导了热障涂层的热力耦合计算列式,编程计算了热障涂层的温度响应和裂纹扩展过程,分析了冲击温度对热障涂层损伤的影响。结果表明:纵向裂纹从陶瓷层表面萌生,沿厚度方向扩展到陶瓷层/粘结层界面附近,部分裂纹出现分叉和转向的现象,形成了与界面平行的横向裂纹;随热冲击温度提高,涂层中纵向裂纹萌生时间提前且数量增加,纵向裂纹数量在0.50 s时达到峰值。近场动力学方法可较好地捕捉热障涂层内部纵向裂纹和横向裂纹的萌生与扩展现象,且裂纹位置、裂纹形式及不同参数对涂层损伤的影响规律与试验符合较好。

本文引用格式

马玉娥 , 杨萌 , 孙文博 . 基于近场动力学理论的热障涂层热冲击开裂行为[J]. 航空学报, 2022 , 43(6) : 526587 -526587 . DOI: 10.7527/S1000-6893.2021.26587

Abstract

To study the failure mechanism of the thermal barrier coating after thermal shock, a thermal shock test of the ceramic-based Thermal Barrier Coating (TBC) was designed and completed. The failure mode of TBCs and the effect of thermal shock temperature were studied. Based on the Peridynamic (PD) theory, thermal-mechanical coupling equations were derived, and programs were coded to simulate the temperature and failure growing of TBC, and the effect of temperature on damage of TBC was analyzed. It is shown that longitudinal cracks propagated from the surface of the ceramic layer to the interface between the ceramic layer and the bond coat layer along the thickness direction. Some of the cracks were branched and turned to be transverse cracks parallel to the interface. As the thermal shock temperature increased, longitudinal cracks in the coating initiated earlier, and the number of the cracks gradually increased and reached a peak at 0.50 s. The PD method can capture the initiation and propagation of cracks, crack position, crack growing and shock temperature effects, and these numerical results agree well with the experimental ones.

参考文献

[1] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732. GUO H B, GONG S K, XU H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2722-2732(in Chinese).
[2] 唐詩白, 荆甫雷. 航空发动机热障涂层的主要失效模式[J]. 航空动力, 2019(3):73-75. TANG S B, JING F L. Main failure modes of TBC of aero engine[J]. Aerospace Power, 2019(3):73-75(in Chinese).
[3] 周绪强, 王红顺, 王艳. 浅谈燃气涡轮发动机热障涂层技术发展[J]. 内燃机与配件, 2019(24):22-23. ZHOU X Q, WANG H S, WANG Y. Brief discussion on the development of thermal barrier coating technology for gas turbine engines[J]. Internal Combustion Engine & Parts, 2019(24):22-23(in Chinese).
[4] GLEESON B. Thermal barrier coatings for aeroengine applications[J]. Journal of Propulsion and Power, 2006, 22(2):375-383.
[5] GUO X Y, LU Z, JUNG Y G, et al. Novel lanthanum zirconate-based thermal barrier coatings for energy applications[M]. Cham:Springer, 2021.
[6] MATHANBABU M, THIRUMALAIKUMARASAMY D, THIRUMAL P, et al. Study on thermal, mechanical, microstructural properties and failure analyses of lanthanum zirconate based thermal barrier coatings:A review[J]. Materials Today:Proceedings, 2021, 46:7948-7954.
[7] ŁATKA L. Thermal barrier coatings manufactured by suspension plasma spraying-A review[J]. Advances in Materials Science, 2018, 18(3):95-117.
[8] NIKI T, OGAWA K, SHOJI T. Mechanical and high temperature oxidation properties of cold sprayed CoNiCrAlY coatings for thermal barrier coating[J]. Journal of Solid Mechanics and Materials Engineering, 2008, 2(6):739-747.
[9] 郭兴旺, 丁蒙蒙. 热障涂层厚度及厚度不均热无损检测的数值模拟[J]. 航空学报, 2010, 31(1):198-203. GUO X W, DING M M. Simulation of thermal NDT of thickness and its unevenness of thermal barrier coatings[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):198-203(in Chinese).
[10] LI S L, YANG H W, QI H Y, et al. Experimental study and numerical modeling of the damage evolution of thermal barrier coating systems under tension[J]. Science China Technological Sciences, 2018, 61(12):1882-1888.
[11] HONDA S, OGIHARA Y, KISHI T, et al. Estimation of thermal shock resistance of fine porous alumina by infrared radiation heating method[J]. Journal of the Ceramic Society of Japan, 2009, 117(1371):1208-1215.
[12] HONDA S, SUZUKI T, NISHIKAWA T, et al. Estimation of thermal shock properties for silicon nitride having high thermal conductivity[J]. Journal of the Ceramic Society of Japan, 2002, 110(1277):38-43.
[13] LIU Y X, WU X F, GUO Q K, et al. Experiments and numerical simulations of thermal shock crack patterns in thin circular ceramic specimens[J]. Ceramics International, 2015, 41(1):1107-1114.
[14] KALANTAR M, FANTOZZI G. Thermo-mechanical properties of ceramics:Resistance to initiation and propagation of crack in high temperature[J]. Materials Science and Engineering:A, 2008, 472(1-2):273-280.
[15] MENG S H, LIU G Q, GUO Y, et al. Mechanisms of thermal shock failure for ultra-high temperature ceramic[J]. Materials & Design, 2009, 30(6):2108-2112.
[16] 刘志远, 肖杰, 杨丽, 等. 涡轮叶片热障涂层隔热性能和应力数值模拟[J]. 湘潭大学学报(自然科学版), 2020, 42(3):107-115. LIU Z Y, XIAO J, YANG L, et al. Numerical simulation of thermal insulation performance and stress of thermal barrier coatings on turbine blades[J]. Journal of Xiangtan University (Natural Science Edition), 2020, 42(3):107-115(in Chinese).
[17] 刘光, 张啸寒, 贾利, 等. 等离子喷涂Mo/8YSZ功能梯度热障涂层结构优化与热力耦合模拟计算[J]. 表面技术, 2020, 49(3):213-223. LIU G, ZHANG X H, JIA L, et al. Structural optimization and thermo-mechanical coupling simulation of plasma sprayed Mo/8YSZ functionally graded thermal barrier coating[J]. Surface Technology, 2020, 49(3):213-223(in Chinese).
[18] 戴晨煜, 钟舜聪, 唐长明, 等. 基于内聚力单元与XFEM的热障涂层失效分析[J]. 焊接学报, 2019, 40(8):138-143, 167. DAI C Y, ZHONG S C, TANG C M, et al. Failure analysis of thermal barrier coatings based on cohesive element and XFEM[J]. Transactions of the China Welding Institution, 2019, 40(8):138-143, 167(in Chinese).
[19] WANG Y T, ZHOU X P, KOU M M. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks[J]. European Journal of Mechanics-A/Solids, 2019, 73:282-305.
[20] GUSKI V, VERESTEK W, RAPP D, et al. Microstructural investigation of plasma sprayed ceramic coatings focusing on the effect of the splat boundary for SOFC sealing applications using peridynamics[J]. Theoretical and Applied Fracture Mechanics, 2021, 112:102926.
[21] LIU B C, BAO R, SUI F C. A fatigue damage-cumulative model in peridynamics[J]. Chinese Journal of Aeronautics, 2021, 34(2):329-342.
[22] TANG S B, ZHANG H, TANG C A, et al. Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock[J]. International Journal of Solids and Structures, 2016, 80:520-531.
[23] ZHANG H, QIAO P Z. An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading[J]. Engineering Fracture Mechanics, 2018, 189:81-97.
[24] OTERKUS S, MADENCI E, AGWAI A. Fully coupled peridynamic thermomechanics[J]. Journal of the Mechanics and Physics of Solids, 2014, 64:1-23.
[25] XUE T, ZHANG X B, TAMMA K K. A two-field state-based Peridynamic theory for thermal contact problems[J]. Journal of Computational Physics, 2018, 374:1180-1195.
[26] WANG Y T, ZHOU X P, KOU M M. Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles[J]. Ceramics International, 2018, 44(10):11512-11542.
[27] DANZER R, LUBE T, SUPANCIC P, et al. Fracture of ceramics[J]. Advanced Engineering Materials, 2008, 10(4):275-298.
[28] MASERA K, HOSSAIN A K. Biofuels and thermal barrier:A review on compression ignition engine performance, combustion and exhaust gas emission[J]. Journal of the Energy Institute, 2019, 92(3):783-801.
[29] 乔丕忠, 张勇, 张恒, 等. 近场动力学研究进展[J]. 力学季刊, 2017, 38(1):1-13. QIAO P Z, ZHANG Y, ZHANG H, et al. A review on advances in peridynamics[J]. Chinese Quarterly of Mechanics, 2017, 38(1):1-13(in Chinese).
[30] 孙杰, 徐业鹏. 改进键型近场动力学方法下的多裂纹板破坏分析[J]. 科学技术与工程, 2020, 20(10):3817-3822. SUN J, XU Y P. Failure of multi-cracked plates by modified bond-based peridynamics[J]. Science Technology and Engineering, 2020, 20(10):3817-3822(in Chinese).
[31] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1):175-209.
[32] BOBARU F, DUANGPANYA M. The peridynamic formulation for transient heat conduction[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20):4047-4059.
文章导航

/