流体力学与飞行力学

变转速下跨声速压气机的耦合扩稳方法

  • 赵乐 ,
  • 王维 ,
  • 张乐福 ,
  • 王伟超 ,
  • 卢金玲 ,
  • 楚武利
展开
  • 1. 西安理工大学 水利水电学院, 西安 710048;
    2. 西安理工大学 省部共建西北旱区生态水利国家重点实验室, 西安 710048;
    3. 西北工业大学 动力与能源学院, 西安 710072;
    4. 先进航空发动机协同创新中心, 北京 100191

收稿日期: 2020-11-02

  修回日期: 2021-01-04

  网络出版日期: 2022-02-14

基金资助

中国博士后科学基金(2020M683525);国家重点研发计划(2018YFB1501900);国家自然科学基金(51879216,51679195);陕西省教育厅科研计划(19JK0587)

Coupling method for stability improvement for transonic compressor at variable speed

  • ZHAO Le ,
  • WANG Wei ,
  • ZHANG Lefu ,
  • WANG Weichao ,
  • LU Jinling ,
  • CHU Wuli
Expand
  • 1. Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China;
    2. State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China;
    3. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China;
    4. Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191, China

Received date: 2020-11-02

  Revised date: 2021-01-04

  Online published: 2022-02-14

Supported by

China Postdoctoral Science Foundation (2020M683525); National Key R & D Program of China(2018YFB1501900); National Natural Science Foundation of China (51879216,51679195); Scientific Research Projects of Shaanxi Provincial Department of Education(19JK0587)

摘要

为了探索在不同转速下均可有效提高压气机失速裕度的扩稳方法,以跨声速压气机为研究对象,利用缝式机匣处理和叶顶喷气进行耦合设计,并参数化研究了缝数目、缝长、缝宽及喷嘴周向宽度对压气机性能的影响规律,结合非定常数值模拟揭示了耦合型机匣处理的扩稳机理。研究结果表明,在100%、80%、60%转速下,压气机失速裕度分别提高9.31%、8.26%、8.68%,设计点效率分别降低0.77%、0.23%、0.41%。缝数目、缝长、缝宽是影响压气机失速裕度及效率的显著因素,而喷嘴周向宽度对压气机失速裕度及效率的影响较小。耦合型机匣处理内形成了抽吸、喷气的耦合流动循环,耦合强度的增加有利于压气机失速裕度的提高,但会降低压气机效率。耦合型机匣处理提高了叶顶负荷,但降低了叶顶泄漏强度,极大消除了叶顶泄漏涡引起的叶顶堵塞,这是压气机失速裕度提高的主要原因。耦合型机匣处理具有在不同转速下均能有效扩稳的潜力。

本文引用格式

赵乐 , 王维 , 张乐福 , 王伟超 , 卢金玲 , 楚武利 . 变转速下跨声速压气机的耦合扩稳方法[J]. 航空学报, 2022 , 43(1) : 124942 -124942 . DOI: 10.7527/S1000-6893.2021.24942

Abstract

To explore an effective method to improve the stall margin of a transonic compressor at different operating speeds, this study couples the slot casing treatment and tip injection to enhance the compressor stability. The effects of the number, length, width of the slots and the nozzle circumferential width on the compressor performance are studied parametrically, and the mechanism of stability enhancement is revealed using unsteady numerical simulations. The results show that the stall margin increases by 9.31%, 8.26% and 8.68% at 100%, 80% and 60% speed, respectively, while the compressor efficiency at the design point is decreased correspondingly by 0.77%, 0.23% and 0.41%. The number, length and width of the slots have significant effects on the stall margin and the efficiency of the compressor, while the circumferential width of the nozzle has little effect on the compressor performance. A flow cycle composed of suction and injection is formed in the coupled casing treatment. The increase of the coupling strength is beneficial to the improvement of the stall margin, and detrimental to the compressor efficiency. The coupling casing treatment leads to the increase of the blade tip loading, meanwhile reducing the tip leakage intensity and eliminating the tip blockage caused by the tip leakage vortex, which is the main reason for the improvement of the compressor stall margin. The coupling casing treatment has the potential to enhance effectively the compressor stability at different speeds.

参考文献

[1] PAN T Y, LI Q S, YUAN W, et al. Effects of axisymmetric arc-shaped slot casing treatment on partial surge initiated instability in a transonic axial flow compressor[J]. Aerospace Science and Technology, 2017, 69: 257-268.
[2] ZHU Z K, YUAN W, LI Q S, et al. A study on the performance prediction model for partial casing treatments[C]//Proceedings of the 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering 2015. Paris: Atlantis Press, 2015: 2200-2207.
[3] ALONE D B, KUMAR S S, SHOBHAVATHY M T, et al. Experimental assessment on effect of lower porosities of bend skewed casing treatment on the performance of high speed compressor stage with tip critical rotor characteristics[J]. Aerospace Science and Technology, 2017, 60: 193-202.
[4] HAH C. The inner workings of axial casing grooves in a one and a half stage axial compressor with a large rotor tip gap: Changes in stall margin and efficiency[J]. Journal of Turbomachinery, 2019, 141(1): 011001.
[5] 李继超, 刘乐, 杜娟, 等. 低速轴流压气机周向单槽机匣处理扩稳实验研究[J]. 航空学报, 2015, 36(5): 1422-1431. LI J C, LIU L, DU J, et al. Experimental investigation of stability enhancement with single circumferential groove casing treatment on a low speed axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1422-1431(in Chinese).
[6] SONG W M, ZHANG Y F, CHEN H X. Design and optimization of multiple circumferential casing grooves distribution considering sweep and lean variations on the blade tip[J]. Energies, 2018, 11(9): 2401.
[7] SUDER K L, HATHAWAY M D, THORP S A, et al. Compressor stability enhancement using discrete tip injection[J]. Journal of Turbomachinery, 2001, 123(1): 14-23.
[8] STRAZISAR A J, BRIGHT M M, THORP S, et al. Compressor stall control through endwall recirculation[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. New York: ASME, 2004: 655-667.
[9] 李继超, 林峰, 刘乐, 等. 跨音轴流压气机自循环喷气扩稳试验研究[J]. 机械工程学报, 2014, 50(8): 135-143. LI J C, LIN F, LIU L, et al. Experimental investigation of self-recirculating tip air injection in transonic axial flow compressor[J]. Journal of Mechanical Engineering, 2014, 50(8): 135-143(in Chinese).
[10] XU R Z, SUN D K, DONG X, et al. Application of stall warning approach with stall precursor-suppressed casing treatment on a two-stage compressor[J]. Journal of Thermal Science, 2019, 28(5): 862-874.
[11] 孙晓峰, 孙大坤. 失速先兆抑制型机匣处理研究进展[J]. 航空学报, 2015, 36(8): 2529-2543. SUN X F, SUN D K. Research progresses of stall precursor-suppressed casing treatment[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2529-2543(in Chinese).
[12] ZHANG H D, WU Y, LI Y H, et al. Control of compressor tip leakage flow using plasma actuation[J]. Aerospace Science and Technology, 2019, 86: 244-255.
[13] WILKE I, KAU H P, BRIGNOLE G. Numerically aided design of a high-efficient casing treatment for a transonic compressor[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: ASME, 2005: 353-364.
[14] ROLFES M, LANGE M, VOGELER K, et al. Experimental and numerical investigation of a circumferential groove casing treatment in a low speed axial research compressor at different tip clearances[J]. Journal of turbomachinery, 2017, 139(12): 121009.
[15] ARSHAD A, LI Q S, LI S M, et al. Effects of inlet radial distortion on the type of stall precursor in low-speed axial compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(1): 55-67.
[16] 熊珊, 孙大坤, 所秋玲, 等. 进气畸变条件下新型机匣处理扩稳效果实验研究[J]. 航空学报, 2013, 34(12): 2692-2700. XIONG S, SUN D K, SUO Q L, et al. Experimental investigation of novel casing treatment on stall margin enhancement under inlet distortion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2692-2700(in Chinese).
[17] URASEK D C, MOORE R D. Effect of casing treatment on performance of an inlet stage for a transonic multistage compressor: NASA-TM-X-3347[R]. Washington, D.C.: NASA, 1976.
[18] WILKE I, KAU H P. A numerical investigation of the flow mechanisms in a HPC front stage with axial slots[C]//Proceedings of ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference. New York: ASME, 2003: 465-477.
[19] GOINIS G, CHRISTIAN V, MARCEL A. Automated optimization of an axial-slot type casing treatment for a transonic compressor: GT2013-94765[R].New York: ASME, 2013.
[20] 屠宝锋, 胡骏, 王永明. 机匣处理的非定常数值分析[J]. 航空动力学报, 2007, 22(9): 1475-1480. TU B F, HU J, WANG Y M. Unsteady numerical analysis for casing treatment[J]. Journal of Aerospace Power, 2007, 22(9): 1475-1480(in Chinese).
[21] SUDER K L, HATHAWAY M D, THORP S A, et al. Compressor stability enhancement using discrete tip injection: 2000-GT-0650[R]. New York: ASME, 2000.
[22] NIE C Q, TONG Z T, GENG S J, et al. Experimental investigations of micro air injection to control rotating stall[J]. Journal of Thermal Science, 2007, 16(1): 1-6.
[23] WANG W, CHU W L, ZHANG H G, et al. Experimental and numerical study of tip injection in a subsonic axial flow compressor[J]. Chinese Journal of Aeronautics, 2017, 30(3): 907-917.
[24] REID L, MOORE R D. Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor: NASA-TP-1337[R]. Washington, D.C.: NASA, 1978.
[25] 王维, 楚武利, 张皓光. 高负荷两级轴流压气机耦合型机匣处理的设计研究[J]. 推进技术, 2017, 38(10): 2365-2373. WANG W, CHU W L, ZHANG H G. Study of design of a coupled casing treatment for a two-stage high-loaded axial flow compressor[J]. Journal of Propulsion Technology, 2017, 38(10): 2365-2373(in Chinese).
[26] ZHANG H D, WU Y, LI Y H, et al. Control of compressor tip leakage flow using plasma actuation[J]. Aerospace Science and Technology, 2019, 86: 244-255.
[27] 王维, 楚武利, 张皓光. 基于试验设计的高负荷轴流压气机叶顶喷气参数化研究[J]. 推进技术, 2014, 35(2): 178-186. WANG W, CHU W L, ZHANG H G. Parametric study of tip injection in a high-loaded axial compressor based on design of experiment[J]. Journal of Propulsion Technology, 2014, 35(2): 178-186(in Chinese).
[28] REID L, MOORE R D. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 1.82: NASA TP 1338[R]. Washington, D.C.: NASA, 1978.
[29] 刘隆刚, 任晓栋, 李雪松, 等. 跨音压气机机匣冷却流动控制方法研究[J]. 工程热物理学报, 2019, 40(12): 2797-2805. LIU L G, REN X D, LI X S, et al. Investigation of casing cooling for flow control in the transonic axial compressor[J]. Journal of Engineering Thermophysics, 2019, 40(12): 2797-2805(in Chinese).
[30] 蒋永松, 王咏梅, 杜辉, 等. 驻室式处理机匣内部流动及扩稳机理的数值研究[J]. 航空动力学报, 2008, 23(2): 361-366. JIANG Y S, WANG Y M, DU H, et al. Plenum chamber casing treatment—Numerical research of internal flow and mechanism of stall margin improvements[J]. Journal of Aerospace Power, 2008, 23(2): 361-366(in Chinese).
[31] 王维, 楚武利, 张皓光. 叶顶喷气对高负荷轴流压气机性能的非定常影响机理[J]. 推进技术, 2014, 35(7): 905-913. WANG W, CHU W L,ZHANG H G. Mechanism of unsteady influence of tip injection on a highloaded axial compressor performance[J]. Journal of Propulsion Technology, 2014, 35(7): 905-913(in Chinese).
[32] SUDER K L, CELESTINA M L. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor[J].Journal of Turbomachinery, 1996, 118(2): 218-229.
[33] 何成, 王如根, 胡加国, 等. 不同转速下叶尖间隙流对跨声速压气机失速的影响[J]. 推进技术, 2016, 37(9): 1657-1663. HE C, WANG R G, HU J G, et al. Effects of tip leakage flow on transonic compressor instability at different rotation speed[J]. Journal of Propulsion Technology, 2016, 37(9): 1657-1663(in Chinese).
[34] EMMRICH R, KUNTE R, HÖNEN H, et al. Time resolved investigations of an axial compressor with casing treatment: Part 2—Simulation[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: ASME, 2007: 199-208.
文章导航

/