Under specific flying conditions, interaction between turbulence and chemical nonequilibrium will occur on hypersonic vehicle surfaces; however, related research is limited. Choosing the flow state after the leading shock of a cone and utilizing two gas models, i.e. the calorically perfect gas and the chemical reaction gas, we conduct a Direct Numerical Simulation (DNS) study to analyze the effects of chemical nonequilibrium on the turbulence statistics and fluctuations, and investigate the scaling law. The results show that the endothermic dissociated reaction is dominant in the boundary layer, significantly reducing the average temperature and temperature fluctuation. However, chemical nonequilibrium only have a small influence on the average streamwise velocity, velocity fluctuation and Reynold stress. In the log-region, the Extended Self-Similarity(ESS) of the fluctuations is still consistent with the scaling law.
[1] MOIN P, MAHESH K. DIRECT NUMERICAL SIMULATION: A tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578.
[2] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43: 163-194.
[3] 李新亮. 高超声速湍流直接数值模拟技术[J]. 航空学报, 2015, 36(1): 147-158. LI X L. Direct numerical simulation techniques for hypersonic turbulent flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 147-158(in Chinese).
[4] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12): 124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124054(in Chinese).
[5] 孙东, 刘朋欣, 沈鹏飞, 等. 马赫6 柱-裙激波/边界层干扰直接模拟研究[J]. 航空学报, 2021, 42(6): 124681. SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a hollow cylinder-flare configuration at Ma 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124681(in Chinese).
[6] MARTÍN M P, WEIRS V G, CANDLER G V. DNS of reacting hypersonic turbulent boundary layer[C]//29th AIAA Fluid Dynamics Conference. Reston: AIAA, 1998.
[7] PIN M, CANDLER G. DNS of a Mach 4 boundary layer with chemical reactions[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
[8] MARTÍN M, CANDLER G. Temperature fluctuation scaling in reacting boundary layers[C]//15th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2001.
[9] MARTÍN M P. Exploratory study of turbulence/chemistry interaction in hypersonic flows[C]//36th AIAA Thermophysics Conference. Reston: AIAA, 2011.
[10] DUAN L, MARTÍN M P. Effect of finite-rate chemical reactions on turbulence in hypersonic turbulence boundary layers[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
[11] DUAN L, MARTÍN M P. Procedure to validate direct numerical simulations of wall-bounded turbulence including finite-rate reactions[J]. AIAA Journal, 2009, 47(1): 244-251.
[12] DUAN L, MARTÍN P. Study of turbulence-chemistry interaction in hypersonic turbulent boundary layers[C]//20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011.
[13] DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59.
[14] CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792.
[15] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-TM-101528[R]. Washington, D.C.: NASA, 1990.
[16] LEHR H F. Experiments on shock-induced combustion[J]. Aeronautica Acta, 1972, 17: 589-597.
[17] 刘君, 董海波, 刘瑜. 化学非平衡流动解耦算法的回顾与新进展[J]. 航空学报, 2018, 39(1): 021090. LIU J, DONG H B, LIU Y. Review and recent advances in uncoupled algorithms for chemical non-equilibrium flows[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021090(in Chinese).
[18] 刘朋欣. 旋转爆震复杂流场的高精度数值模拟与机理分析[D]. 北京: 军事科学院, 2018: 43-51. LIU P X. High-order numerical simulation and mechanism study of complex flow in rotating detonation[D]. Beijing: Academy of Military Sciences PLA China, 2018: 43-51(in Chinese).
[19] LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation[J]. Computers & Fluids, 2018, 170: 261-272.
[20] LIU P X, LI Q, HUANG Z F, et al. Interpretation of wake instability at slip line in rotating detonation[J]. International Journal of Computational Fluid Dynamics, 2018, 32(8-9): 379-394.
[21] LIU P X, GUO Q L, SUN D, et al. Wall effect on the flow structures of three-dimensional rotating detonation wave[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29546-29559.
[22] KNIGHT D, LONGO J, DRIKAKIS D, et al. Assessment of CFD capability for prediction of hypersonic shock interactions[J]. Progress in Aerospace Sciences, 2012, 48-49: 8-26.
[23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[24] ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143.
[25] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445.
[26] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231.
[27] SUBBAREDDY P, CANDLER G. DNS of transition to turbulence in a hypersonic boundary layer[C]//41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
[28] TIKHOMIROV V M. Local structure of turbulence in an incompressible viscous fluid at very large Reynolds numbers[M]//Selected Works of A.N.Kolmogorov. Dordrecht: Springer Netherlands, 1991: 312-318.
[29] KOLMOGOROV A N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[J]. Journal of Fluid Mechanics, 1962, 13(1): 82-85.
[30] BENZI R, CILIBERTO S, TRIPICCIONE R, et al. Extended self-similarity in turbulent flows[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1993, 48(1): R29-R32.
[31] SHE Z, LEVEQUE E. Universal scaling laws in fully developed turbulence[J]. Physical Review Letters, 1994, 72(3): 336-339.