论文

短舱气动性能参数化研究

  • 卫永斌 ,
  • 段卓毅 ,
  • 郭兆电 ,
  • 杨成凤
展开
  • 航空工业第一飞机设计研究院, 西安 710089

收稿日期: 2021-12-03

  修回日期: 2021-12-16

  网络出版日期: 2022-01-26

基金资助

层流机翼飞行与验证技术研究项目

Parameterization investigation method for nacelle aerodynamic performance

  • WEI Yongbin ,
  • DUAN Zhuoyi ,
  • GUO Zhaodian ,
  • YANG Chengfeng
Expand
  • AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2021-12-03

  Revised date: 2021-12-16

  Online published: 2022-01-26

Supported by

Foundation of Research on Flight and Verification Technology of Laminar Flow Wing

摘要

给出了一套参数化研究短舱气动性能的方法,主要包括总压恢复系数、静态畸变指数、阻力系数、压力系数、流量系数等5个参数。重点研究了影响短舱气动性能的进口形状、唇口前缘半径2个要素。比较3种考虑层流原理设计的短舱发现,无攻角状态不同进口形状的短舱气动性能相差很小,椭圆形进口短舱的综合气动性能略好于其他2种进口形状短舱的。不同唇口前缘半径的短舱在高速攻角侧滑角状态下气动性能差别较大,大唇口前缘半径的短舱综合气动性能明显偏低,低速状态则综合气动性能差别较小。

本文引用格式

卫永斌 , 段卓毅 , 郭兆电 , 杨成凤 . 短舱气动性能参数化研究[J]. 航空学报, 2022 , 43(11) : 526742 -526742 . DOI: 10.7527/S1000-6893.2022.26742

Abstract

A parameterization investigation method for nacelle aerodynamic performance is presented, mainly including five parameters:total pressure recovery coefficient,static distortion index, drag coefficient, pressure coefficient, and flow coefficient. Two elements influencing the nacelle aerodynamic performance are dominantly investigated. Comparison of three types of nacelles considering the laminar flow principle reveals that the aerodynamic performance of nacelles with different inlet shapes is nearly the same with no angle of attack, while the comprehensive aerodynamic performance of the nacelle with the ellipse shaped inlet is slightly better than that of the other two with different inlet shapes. The aerodynamic performance of nacelles with different inlet lip leading radii exhibits considerable differences at a high speed with a high angle of attack and sideslip. The comprehensive aerodynamic performance of the nacelles with a large inlet lip leading radius is clearly low, while that of the nacelles at a low speed shows almost no difference.

参考文献

[1] LIN W F, CHEN A W, TINOCO E N. 3D transonic nacelle and winglet design:AIAA-1990-3064[R]. Reston:AIAA,1990.
[2] NAIK D A, KRIST S E, CAMPBELL R L, et al. Inverse design of nacelles using multi-block Navier Stokes codes:AIAA-1995-1820[R]. Reston:AIAA, 1995.
[3] WILHELM R. Inverse design method for designing isolated and wing-mounted engine[J]. Journal of aircraft, 2002, 39(6):989-995.
[4] 沈克扬. 涡扇发动机短舱的气动设计方法[J]. 民用飞机设计与研究, 1992(4):11-19. SHEN K Y. Aerodynamic design method of turbofan engine nacelle[J]. Civil Aircraft Design & Research, 1992(4):11-19(in Chinese).
[5] 周洪升, 钟易成. 民机翼吊式短舱参数化造型设计[J]. 机械制造与自动化, 2010, 39(4):3-6, 16. ZHOU H S, ZHONG Y C. Parameterized model design of under-the-wing nacelle for civil aircraft[J]. Machine Building & Automation, 2010, 39(4):3-6, 16(in Chinese).
[6] 刘凯礼, 姬昌睿, 谭兆光, 等. 大涵道比涡扇发动机TPS短舱低速气动特性分析[J]. 推进技术, 2015, 36(2):186-193. LIU K L, JI C R, TAN Z G, et al. Numerical study on low speed aerodynamic performance of large bypass ratio engine TPS nacelle[J]. Journal of Propulsion Technology, 2015, 36(2):186-193(in Chinese).
[7] 刘凯礼, 司江涛, 赵克良, 等. 大涵道比发动机通流短舱阻力特性修正数值研究[J]. 推进技术, 2019, 40(5):978-985. LIU K L, SI J T, ZHAO K L, et al. Numerical study of large bypass ratio engine through flow nacelle on drag characteristic correction[J]. Journal of Propulsion Technology, 2019, 40(5):978-985(in Chinese).
[8] 刘凯礼, 孙一峰, 钟园, 等. 民用飞机进气道的侧风畸变研究[J]. 航空动力学报, 2015, 30(2):289-296. LIU K L, SUN Y F, ZHONG Y, et al. Research on inlet distortion under crosswind for civil aircraft[J]. Journal of Aerospace Power, 2015, 30(2):289-296(in Chinese).
[9] 王修方. 涡扇发动机动力短舱的设计[J]. 民用飞机设计与研究, 1998(1):30-36. WANG X F. Design of turbofan engine power nacelle[J]. Civil Aircraft Design & Resarch, 1998(1):30-36(in Chinese).
[10] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[11] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese).
[12] 李权, 段卓毅, 张彦军, 等. 民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in research on natural laminar wing for civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese).
[13] HOMES B J, OBARA C J, YIP L P. Natural laminar flow experiments on modern airplane surfaces:NASA-TP-2256[R]. Washington, D.C.:NASA, 1984.
[14] RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1):1-12.
[15] ZHONG Y J, LI S Y. A 3D shape design and optimization method for natural laminar flow nacelle:GT-2017-6437[R]. New York:ASME, 2017.
[16] 曹凡, 胡骁, 张美芳, 等. 高雷诺数下跨声速自然层流短舱优化设计[J]. 航空动力学报, 2021, 36(8):1729-1739. CAO F, HU X, ZHANG M F, et al. Transonic natural laminar flow nacelle optimization design at high Reynolds number[J]. Journal of Aerospace Power, 2021, 36(8):1729-1739(in Chinese).
[17] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).
[18] 陈俊, 章欣涛, 冯丽娟. 民用航空涡轮发动机短舱高速风洞试验[J]. 航空动力学报, 2019, 34(7):1416-1424. CHEN J, ZHANG X T, FENG L J. High speed wind tunnel test of civil aviation turbine engine nacelle[J]. Journal of Aerospace Power, 2019, 34(7):1416-1424(in Chinese).
[19] 章欣涛, 冯丽娟, 王维, 等. 民用航空涡扇发动机短舱外部阻力试验方法研究[J]. 推进技术, 2021, 42(2):241-248. ZHANG X T, FENG L J, WANG W, et al. Test method of external drag of civil aviation turbofan engine nacelle[J]. Journal of Propulsion Technology, 2021, 42(2):241-248(in Chinese).
[20] 卫永斌, 张堃元. 三维侧压式高超声速进气道阻力特性分析[J]. 航空动力学报, 2009, 24(7):1594-1600. WEI Y B, ZHANG K Y. Analysis of drags trait in three-dimensional sidewall hypersonic inlet[J]. Journal of Aerospace Power, 2009, 24(7):1594-1600(in Chinese).
[21] RE R J. An investigation of several NACA 1 series axisymmetric inlets at Mach numbers from 0.4 to 1.29:TM-X-2917[R]. Washington, D.C.:NASA, 1974.
[22] DENNER B, MCCALLUM B, TRUAX P. CFD precicton of inlet spill drag increments:AIAA-1998-3566[R]. Reston:AIAA, 1998.
[23] SEDDON J, GOLDSMITH E. Intake aerodynamics[M]. 2nd ed. Reston:AIAA, 1999.
文章导航

/