流体力学与飞行力学

一般曲线坐标系下概率密度函数方法及其在超声速燃烧中的应用

  • 关清帝 ,
  • 梁剑寒 ,
  • 张林 ,
  • 陈文武 ,
  • 陈玉俏
展开
  • 国防科技大学 空天科学学院 临近空间技术研究所,长沙 410073
.E-mail: jhleon@vip.sina.com

收稿日期: 2021-11-19

  修回日期: 2021-12-10

  录用日期: 2022-01-19

  网络出版日期: 2022-01-26

基金资助

国家自然科学基金(91641201)

Probability density function method in general curvilinear coordinate system and its application in supersonic combustion

  • Qingdi GUAN ,
  • Jianhan LIANG ,
  • Lin ZHANG ,
  • Wenwu CHEN ,
  • Yuqiao CHEN
Expand
  • Science and Technology on Scramjet Laboratory,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2021-11-19

  Revised date: 2021-12-10

  Accepted date: 2022-01-19

  Online published: 2022-01-26

Supported by

National Natural Science Foundation of China(91641201)

摘要

输运型概率密度函数(PDF)方法能够精确求解湍流/化学反应相互作用,有望为超燃冲压发动机中复杂的超声速湍流燃烧模拟提供可靠的计算模型。目前超声速流中的概率密度函数方法研究大多局限在简单构型下,严重限制了其在实际超声速燃烧问题中的应用。本文旨在发展基于多块结构网格的曲线坐标概率密度函数方法,使其能适用于具有复杂构型的实际超声速燃烧问题模拟。推导了曲线坐标下的概率密度输运方程和随机微分方程,建立了一般曲线坐标系下的概率密度函数方法及其数值求解框架。提出了多块结构网格下的曲线坐标粒子追踪方法,通过多块网格间的拓扑信息进行粒子局部坐标转换与通信,解决了曲线坐标下粒子局部坐标与全局坐标不一致的问题,成功实现了粒子在全局网格的连续追踪。在一维激波管和二维时间混合层中,通过与精确解和直接数值模拟结果的对比,初步验证了该方法和模型的准确性。进一步在二维圆柱绕流和三维球头绕流算例中,测试了其处理复杂构型的能力。最后开展了典型的超声速同轴射流火焰的数值模拟,与实验结果进行了定量对比。结果显示预测的反应组分与实验符合较好,全面验证了一般曲线坐标系下的概率密度函数方法在实际超声速燃烧问题中的适用性和准确性。

本文引用格式

关清帝 , 梁剑寒 , 张林 , 陈文武 , 陈玉俏 . 一般曲线坐标系下概率密度函数方法及其在超声速燃烧中的应用[J]. 航空学报, 2023 , 44(4) : 126677 -126677 . DOI: 10.7527/S1000-6893.2022.26677

Abstract

The transported Probability Density Function (PDF) method can accurately solve turbulence/chemical reaction interactions, and can be used as a reliable computational model for complex supersonic turbulent combustion simulations in scramjet engines. At present, research on the PDF method for the supersonic flow is mostly confined to simple configuration, which seriously limits its application in practical supersonic combustion. The objective of this paper is to develop a curvilinear PDF method based on multi-block structured grids, which is applicable to the simulation of real supersonic combustion problems with complex configurations. The PDF equations and stochastic differential equations in curvilinear coordinates are derived, and the PDF method in a general curvilinear coordinate system and its numerical solution framework are established. A method for particle tracking in curvilinear coordinates on the multi-block structural grid is proposed. The topological information between multiple grid blocks is used for particle local coordinate transformation and communication, which solves the problem of inconsistency between particle local coordinates and global coordinates in curvilinear coordinates. Continuous tracking of particles on the global grid is successfully achieved. The accuracy of the curvilinear coordinate method and model is verified by comparing the results with the exact solution and direct numerical simulations in the one-dimensional shock tube and two-dimensional temporal mixing layer. The ability of the method to handle complex configurations is further tested in the simulations of the flow around a two-dimensional cylinder and a three-dimensional spherical blunt. Finally, numerical simulation of a typical supersonic coaxial jet flame is carried out, and the numerical results are quantitatively compared with the experimental results. The comparison results show that the predicted reaction components are in good agreement with those obtained in the experiment, which comprehensively verifies the applicability and accuracy of the PDF method in the general curvilinear coordinate system in actual supersonic combustion problems.

参考文献

1 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报201536(1): 261-273.
  YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica201536(1): 261-273 (in Chinese).
2 许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展[J]. 航空学报202142(12): 625842.
  XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow[J]. Acta Aeronautica et Astronautica Sinica202142(12): 625842 (in Chinese).
3 PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics2004504: 73-97.
4 BERGLUND M, FEDINA E, FUREBY C, et al. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet[J]. AIAA Journal201048(3): 540-550.
5 KERSTEIN A R. A linear-eddy model of turbulent scalar transport and mixing[J]. Combustion Science and Technology198860(4-6): 391-421.
6 陈崇沛, 梁剑寒, 关清帝, 等. 守恒型可压缩一维湍流方法及其在超声速标量混合层中的应用[J]. 航空学报202142(S1): 726364.
  CHEN C P, LIANG J H, GUAN Q D, et al. Conservative compressible one-dimensional turbulence method and its application in supersonic scalar mixing layer[J]. Acta Aeronautica et Astronautica Sinica202142(S1): 726364 (in Chinese).
7 POPE S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science198511(2): 119-192.
8 PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics2021425: 109899.
9 GIVI P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and Combustion Science198915(1): 1-107.
10 POPE S B. Computations of turbulent combustion: progress and challenges[J]. Symposium (International) on Combustion199123(1): 591-612.
11 GAO F, O'BRIEN E E. A large-eddy simulation scheme for turbulent reacting flows[J]. Physics of Fluids A: Fluid Dynamics19935(6): 1282-1284.
12 JAISHREE J. Lagrangian and Eulerian probability density function methods for turbulent reacting flows [D]. State College: Pennsylvania State University, 2011.
13 YANG Y, WANG H F, POPE S B, et al. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute201334(1): 1241-1249.
14 JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large-eddy simulation of turbulent reacting flows [J]. Journal of Fluid Mechanics1999401: 85-121.
15 BANAEIZADEH A, LI Z R, JABERI F A. Compressible scalar filtered mass density function model for high-speed turbulent flows[J]. AIAA Journal201149(10): 2130-2143.
16 KOMPERDA J, GHIASI Z, LI D R, et al. Simulation of the cold flow in a ramp-cavity combustor using a DSEM-LES/FMDF hybrid scheme[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
17 ZHANG L, LIANG J H, SUN M B, et al. An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows[J]. Combustion Theory and Modelling201822(1): 1-37.
18 ZHANG L, LIANG J H, SUN M B, et al. A conservative and consistent scalar filtered mass density function method for supersonic flows[J]. Physics of Fluids202133(2): 026101.
19 VALIDI A, SCHOCK H, JABERI F. Turbulent jet ignition assisted combustion in a rapid compression machine[J]. Combustion and Flame2017186: 65-82.
20 RANADIVE H D. High-order compressible formulation for LES/PDF simulations of turbulent reacting flows[D]. Sydney: University of New South Wales, 2019.
21 CHENG T S, WEHRMEYER J A, PITZ R W, et al. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame[J]. Combustion and Flame199499(1): 157-173.
22 ABDULRAHMAN H, VALIDI A, JABERI F. Large-eddy simulation/filtered mass density function of non-premixed and premixed colorless distributed combustion[J]. Physics of Fluids202133(5): 055118.
23 YOSHIZAWA A, HORIUTI K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows[J]. Journal of the Physical Society of Japan198554(8): 2834-2839.
24 LI P B, LI C Y, WANG H B, et al. Distribution characteristics and mixing mechanism of a liquid jet injected into a cavity-based supersonic combustor[J]. Aerospace Science and Technology201994: 105401.
25 LIU C Y, SUN M B, WANG H B, et al. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor[J]. Aerospace Science and Technology2020106: 106186.
26 SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws: NASA/CR-97-206253[R]. Washington, D.C.: NASA, 1997.
27 GIKHMAN I I, SKOROKHOD A V. The theory of stochastic processes III[M]. Berlin, Heidelberg: Springer, 2007.
28 WANG H F, POPOV P P, POPE S B. Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations[J]. Journal of Computational Physics2010229(5): 1852-1878.
29 EVANS J, SCHEXNAYDER C J, BEACH H. Application of a two-dimensional parabolic computer program to prediction of turbulent reacting flows: NASA-TP-1169[R]. Washington, D.C.: NASA, 1978.
30 LIU C Y, WANG N, YANG K, et al. Large eddy simulation of a supersonic lifted jet flame in the high-enthalpy coflows[J]. Acta Astronautica2021183: 233-243.
31 CONAIRE M ó, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics200436(11): 603-622.
文章导航

/