基于RBF和主动学习的非概率可靠度求解方法
收稿日期: 2021-11-15
修回日期: 2021-12-23
录用日期: 2022-01-17
网络出版日期: 2022-01-26
基金资助
国家科技重大专项(2017-V-0013-0065)
A RBF and active learning combined method for structural non-probabilistic reliability analysis
Received date: 2021-11-15
Revised date: 2021-12-23
Accepted date: 2022-01-17
Online published: 2022-01-26
Supported by
National Science and Technology Major Project(2017-V-0013-0065)
进行结构非概率可靠性分析时,对于失效域与超椭球不确定域发生干涉的情况,非概率可靠度相较于非概率可靠度指标更具有适用性。为了提高超椭球模型下结构非概率可靠度的求解效率,本文提出一种求解非概率可靠度问题的高效主动学习方法。首先,结合交叉验证和jackknifing方法推导了RBF模型在未知点处的jackknifing方差以评估模型预测的不确定性,并根据该方差基于RBF的主动学习函数对非概率可靠度进行求解。其次,提出有效收敛准则来终止非概率可靠性分析的主动学习过程。最后,3个算例表明该方法能够在较少功能函数调用次数下得到精确的非概率可靠度估计值,具有良好的工程应用价值。
姜峰 , 李华聪 , 符江锋 , 洪林雄 . 基于RBF和主动学习的非概率可靠度求解方法[J]. 航空学报, 2023 , 44(2) : 226667 -226667 . DOI: 10.7527/S1000-6893.2022.26667
When the failure domain and the hyper-ellipsoid uncertainty domain interfere with each other in non-probabilistic reliability analysis, non-probabilistic reliability is more applicable than the non-probabilistic reliability index. To improve the solution efficiency of structural non-probabilistic reliability of the hyper-ellipsoid model, this paper proposes an active learning method to solve non-probabilistic reliability problems. The jackknifing variance of the Radial Basis Function (RBF) model at the unknown point is derived by combining the cross-validation and the jackknifing methods, so as to estimate the uncertainty of the predicted values. To solve the non-probabilistic reliability, the is employed which is based on the variance. Based on the jackknifing variance, non-probabilistic reliability is solved using the active learning function of RBF. An effective convergence criterion is then proposed to terminate the process of active learning of non-probabilistic reliability analysis. Three numerical examples reveal that this method proposed can estimate the exact non-probabilistic reliability value under the condition of less calculation of the limit state function, and has strong applicability in structural non-probabilistic reliability analysis.
1 | 王睿星, 王晓军, 王磊, 等. 几种结构非概率可靠性模型的比较研究[J]. 应用数学和力学, 2013, 34(8): 871-880. |
WANG R X, WANG X J, WANG L, et al. Comparisons of several non-probabilistic models for structural reliability[J]. Applied Mathematics and Mechanics, 2013, 34(8): 871-880 (in Chinese). | |
2 | BEN-HAIM Y, ELISHAKOFF I. Preface[M]∥Convex models of uncertainty in applied mechanics. Amsterdam: Elsevier, 1990: xiii-xvii. |
3 | JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(33-36): 2528-2546. |
4 | NI B Y, JIANG C, HAN X. An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis[J]. Applied Mathematical Modelling, 2016, 40(7-8): 4727-4745. |
5 | MENG Z, HU H, ZHOU H L. Super parametric convex model and its application for non-probabilistic reliability-based design optimization[J]. Applied Mathematical Modelling, 2018, 55: 354-370. |
6 | LIU J, YU Z B, ZHANG D Q, et al. Multimodal ellipsoid model for non-probabilistic structural uncertainty quantification and propagation[J]. International Journal of Mechanics and Materials in Design, 2021, 17(3): 633-657. |
7 | LIU X, WANG X Y, SUN L, et al. An efficient multi-objective optimization method for uncertain structures based on ellipsoidal convex model[J]. Structural and Multidisciplinary Optimization, 2019, 59(6): 2189-2203. |
8 | 檀中强. 基于椭球模型的不确定性量化与可靠性分析方法研究[D]. 杭州: 浙江理工大学, 2018. |
TAN Z Q. A study of uncertainty quantification and reliability analysis method based on ellipsoid model[D]. Hangzhou: Zhejiang Sci-Tech University, 2018 (in Chinese). | |
9 | 张卓辉. 可靠性精确建模分析及高效优化算法研究[D]. 合肥: 合肥工业大学, 2020. |
ZHANG Z H. Research on accurate reliability modeling and high performance optimization algorithm[D]. Hefei: Hefei University of Technology, 2020 (in Chinese). | |
10 | 张屹尚, 刘永寿, 赵彬, 等. 基于Kriging模型的充液管道共振非概率可靠性分析[J]. 振动工程学报, 2012, 25(2): 117-123. |
ZHANG Y S, LIU Y S, ZHAO B, et al. Non-probabilistic reliability analysis on resonance of fluid-filled pipeline based on Kriging model[J]. Journal of Vibration Engineering, 2012, 25(2): 117-123 (in Chinese). | |
11 | 辛腾达, 王华, 崔村燕, 等. 不确定条件下贮箱区间凸模型可靠性评估[J]. 北京航空航天大学学报, 2018, 44(11): 2380-2387. |
XIN T D, WANG H, CUI C Y, et al. Reliability evaluation of tank under uncertain conditions based on interval convex model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2380-2387 (in Chinese). | |
12 | 毕仁贵. 考虑相关性的不确定凸集模型与非概率可靠性分析方法[D]. 长沙: 湖南大学, 2015. |
BI R G. Non-probabilistic uncertainty convex model and reliability analysis method incorporating correlation[D]. Changsha: Hunan University, 2015 (in Chinese). | |
13 | 洪东跑, 马小兵, 赵宇, 等. 基于容差分析的结构非概率可靠性模型[J]. 机械工程学报, 2010, 46(4): 157-162. |
HONG D P, MA X B, ZHAO Y, et al. Non-probabilistic model for structural reliability based on tolerance analysis[J]. Journal of Mechanical Engineering, 2010, 46(4): 157-162 (in Chinese). | |
14 | 孙海龙, 姚卫星. 结构区间可靠性分析的可能度法[J]. 中国机械工程, 2008, 19(12): 1483-1488. |
SUN H L, YAO W X. Possibility degree method for structural interval reliability analysis[J]. China Mechanical Engineering, 2008, 19(12): 1483-1488 (in Chinese). | |
15 | 郭书祥, 吕震宙, 冯元生. 基于区间分析的结构非概率可靠性模型[J]. 计算力学学报, 2001, 18(1): 56-60. |
GUO S X, LU Z Z, FENG Y S. A non-probabilistic model of structural reliability based on interval analysis[J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 56-60 (in Chinese). | |
16 | CAO H J, DUAN B Y. Approach on the non-probabilistic reliability of structures based on uncertainty convex models[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 546-549+578. |
17 | 罗阳军, 亢战, LI A. 基于凸模型的结构非概率可靠性指标及其求解方法研究[J]. 固体力学学报, 2011, 32(6): 646-654. |
LUO Y J, KANG Z, LI A. Study on structural non-probabilistic reliability index under convex models and its solution methods[J]. Chinese Journal of Solid Mechanics, 2011, 32(6): 646-654 (in Chinese). | |
18 | 周凌, 安伟光, 贾宏光. 超椭球凸集合可靠性综合指标定义及求解方法[J]. 航空学报, 2011, 32(11): 2025-2035. |
ZHOU L, AN W G, JIA H G. Definition and solution of reliability comprehensive index of super-ellipsoid convex set[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 2025-2035 (in Chinese). | |
19 | 王晓军, 邱志平, 武哲. 结构非概率集合可靠性模型[J]. 力学学报, 2007, 39(5): 641-646. |
WANG X J, QIU Z P, WU Z. Non-probabilistic set-based model for structural reliability[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 641-646 (in Chinese). | |
20 | 乔心州, 仇原鹰, 孔宪光. 一种基于椭球凸集的结构非概率可靠性模型[J]. 工程力学, 2009, 26(11): 203-208. |
QIAO X Z, QIU Y Y, KONG X G. A non-probabilistic model of structural reliability based on ellipsoidal convex model[J]. Engineering Mechanics, 2009, 26(11): 203-208 (in Chinese). | |
21 | MENG Z, WAN H P, SHENG Z L, et al. A novel study of structural reliability analysis and optimization for super parametric convex model[J]. International Journal for Numerical Methods in Engineering, 2020, 121(18): 4208-4229. |
22 | JIANG C, BI R G, LU G Y, et al. Structural reliability analysis using non-probabilistic convex model[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 83-98. |
23 | 魏娟, 张建国, 邱涛. 基于改进的动态Kriging模型的结构可靠度算法[J]. 北京航空航天大学学报, 2019, 45(2): 373-380. |
WEI J, ZHANG J G, QIU T. Structural reliability algorithm based on improved dynamic Kriging model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 373-380 (in Chinese). | |
24 | 洪林雄, 李华聪, 彭凯, 等. 基于改进学习策略的Kriging模型结构可靠度算法[J]. 西北工业大学学报, 2020, 38(2): 412-419. |
HONG L X, LI H C, PENG K, et al. Structural reliability algorithms of kriging model based on improved learning strategy[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 412-419 (in Chinese). | |
25 | 王洪志. 基于距离约束策略的主动学习Kriging方法及其工程应用[D]. 大连: 大连理工大学, 2019. |
WANG H Z. Active learning Kriging method based on distance constraint strategy and its engineering application[D]. Dalian: Dalian University of Technology, 2019 (in Chinese). | |
26 | 张屹尚. 复杂结构的不确定性传递及重要性分析研究[D]. 西安: 西北工业大学, 2015. |
ZHANG Y S. Research on the propagation of stochastic uncertainty and importance measure for complex structures[D]. Xi'an: Northwestern Polytechnical University, 2015 (in Chinese). | |
27 | XIAO N C, ZUO M J, ZHOU C N. A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis[J]. Reliability Engineering & System Safety, 2018, 169: 330-338. |
28 | SHI L J, SUN B B, IBRAHIM D S. An active learning reliability method with multiple kernel functions based on radial basis function[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 211-229. |
29 | HONG L X, LI H C, PENG K. A combined radial basis function and adaptive sequential sampling method for structural reliability analysis[J]. Applied Mathematical Modelling, 2021, 90: 375-393. |
30 | JING Z, CHEN J Q, LI X. RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis[J]. Reliability Engineering & System Safety, 2019, 189: 42-57. |
31 | 罗阳军, 亢战. 超椭球模型下结构非概率可靠性指标的迭代算法[J]. 计算力学学报, 2008, 25(6): 747-752. |
LUO Y J, KANG Z. An iteration approach for structural non-probabilistic reliability analysis based on hyper-ellipsoidal models[J]. Chinese Journal of Computational Mechanics, 2008, 25(6): 747-752 (in Chinese). | |
32 | KLEIJNEN J, BEERS W. Application-driven sequential designs for simulation experiments: Kriging metamodeling[J]. Journal of the Operational Research Society, 2004, 55:876-883 |
33 | ZHAO H L, YUE Z F, LIU Y S, et al. An efficient reliability method combining adaptive importance sampling and Kriging metamodel[J]. Applied Mathematical Modelling, 2015, 39(7): 1853-1866. |
/
〈 |
|
〉 |