论文

某层流机翼验证机风洞试验数据修正方法

  • 姜有旭 ,
  • 李杰 ,
  • 杨钊
展开
  • 西北工业大学 航空学院, 西安 710072

收稿日期: 2021-12-13

  修回日期: 2021-12-29

  网络出版日期: 2022-01-18

基金资助

国家自然科学基金(11972304,12272312);航空科学基金(2019ZA053005)

Data correction method of wind tunnel test for verification aircraft with laminar wing section

  • JIANG Youxu ,
  • LI Jie ,
  • YANG Zhao
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-12-13

  Revised date: 2021-12-29

  Online published: 2022-01-18

Supported by

National Natural Science Foundation of China (11972304, 12272312); Aeronautical Science Foundation of China (2019ZA053005)

摘要

高亚声速条件下机翼层流特性对雷诺数非常敏感,风洞试验雷诺数与飞行雷诺数有较大差异,需要对验证机风洞试验数据进行合理修正。针对验证机对雷诺数效应敏感的特点,首先总结并对比了基于经验公式和基于数值模拟的风洞试验气动力系数雷诺数效应修正方法的优缺点和适用性,并给出了风洞试验中伪雷诺数效应和模型差异等的影响,为验证机试验数据修正提供了思路。然后结合变雷诺数数值模拟对验证机气动特性进行雷诺数效应影响规律研究。最后使用基于变雷诺数数值模拟的试验数据修正方法将验证机高低速风洞试验结果由低雷诺数向高雷诺数修正。结果表明:变雷诺数数值模拟风洞试验数据修正方法对层流机翼验证机高低速风洞试验数据修正效果良好,为验证机精细设计提供数据支撑。

本文引用格式

姜有旭 , 李杰 , 杨钊 . 某层流机翼验证机风洞试验数据修正方法[J]. 航空学报, 2022 , 43(11) : 526814 -526814 . DOI: 10.7527/S1000-6893.2021.26814

Abstract

The laminar flow characteristics of wings at a high subsonic speed are sensitive to Reynolds number, while the Reynolds number of the wind tunnel test is considerably different from that of flight, necessitating reasonable correction of the wind tunnel test data of the verification aircraft. This paper first summarizes and compares the advantages, disadvantages and applicability of Reynolds number effect correction methods based on the empirical formula and numerical simulation in the aerodynamic coefficients correction of wind tunnel test data. The influence of pseudo Reynolds number effect and model difference in wind tunnel tests providing ideas for the verification aircraft test data correction is then discussed. Combined with the numerical simulation of the variable Reynolds number, the influence law of Reynolds number on the aerodynamic characteristics of the verification aircraft is studied. Finally, the test data correction method based on the variable Reynolds number numerical simulation is used to correct the high and low speed wind tunnel test results from low Reynolds numbers to high Reynolds numbers. The results show that the variable Reynolds number numerical simulation wind tunnel test data correction method has a good effect on high and low speed wind tunnel test data of the verification aircraft with the laminar wing section, therefore providing data support for detailed design of the verification aircraft.

参考文献

[1] BUSHNELL D M. Scaling:Wind tunnel to flight[J]. Annual Review of Fluid Mechanics, 2006, 38:111-128.
[2] PRAHARAJ S, ROGER R, CHAN S, et al. CFD computations to scale jet interaction effects from tunnel to flight[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997.
[3] WILLIAMS J. Technical evaluation report on the flight mechanics panel symposium on ground/flight test techniques and correlation[R]. 1983.
[4] KATZ J, WALTERS R. Investigation of wind-tunnel wall effects in high blockage testing[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1995.
[5] MCKINNEY L, BAALS D. Wind-tunnel/flight correlation, 1981:108239628[R]. 1982.
[6] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[7] 恽起麟. 风洞实验数据的误差与修正[M]. 北京:国防工业出版社, 1996. YUN Q L. rror and correction of wind tunnel test data[M]. Beijing:National Defense Industry Press, 1996(in Chinese).
[8] ELSENAAR A. Observed Reynolds number effects on airfoils and high aspect ratio wings at transonic flow conditions[R]. 1988.
[9] PETTERSSON K, RIZZI A. Aerodynamic scaling to free flight conditions:Past and present[J]. Progress in Aerospace Sciences, 2008, 44(4):295-313.
[10] GHANADI F, DJENIDI L. Reynolds number effect on the response of a rough wall turbulent boundary layer to local wall suction[J]. Journal of Fluid Mechanics, 2021, 916:A25.
[11] SODERMAN P T, AIKEN T N. Full-scale wind-tunnel tests of a small unpowered jet aircraft with a T-tail:NASA TN D-6573[R]. Washington,D.C.:NASA, 1971.
[12] KELLER D. High-lift design for a forward swept natural laminar flow wing[J]. CEAS Aeronautical Journal, 2020, 11(1):81-92.
[13] KIM J, LEE Y. A study on effective correction of internal drag and wall interference using response surface in wind tunnel test[J]. Journal of the Korea Institute of Military Science and Technology, 2019, 22(5):637-643.
[14] KIMZEY W F, COVERT E E, ROONEY E C,et al. Thrust and drag:Its prediction and verification[M]. Reston:AIAA, 1985.
[15] KIMZEY W F, COVERT E E, ROONEY E C. Thrust and drag:Its prediction and verification[M]. Reston:AIAA, 1985:281-330.
[16] CARLSON J. Prediction of very high Reynolds nubmer compressible skin friction[C]//20th AIAA Advanced Measurement and Ground Testing Technology Conference. Reston:AIAA, 1998.
[17] SOMMER S C, SHORT B. Free-flight measurements of turbulent-boundary-layer skin friction in the presence of severe aerodynamic heating at Mach numbers from 2.8 to 7.0:NACA TN3391[R]. Washington, D.C.:NACA, 1955.
[18] RAYMER D P. Aircraft design:A conceptual approach[M]. Reston:AIAA, 1992.
[19] BARLOW J B, RAE W H, POPE A. Low-speed wind tunnel testing[M]. New York:Wiley, 1999.
[20] JACOBS E, SHERMAN A. Airfoil section characteristics as affected by variations of the Reynolds number:586[R]. Springfield:National Technical Information Service, 1939.
[21] SELIG M, DETERS R, WILIAMSON G. Wind tunnel testing airfoils at low Reynolds numbers[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[22] REICHENBACH S, MCMASTERS J. A semiempirical interpolation technique for predicting full-scale flight characteristics[C]//25th AIAA Aerospace Sciences Meeting. Reston:AIAA, 1987.
[23] NICOLÍ A, IMPERATORE B, MARINI M, et al. Ground-to-flight extrapolation of the aerodynamic coefficients of the VEGA launcher[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2006.
[24] PETTERSSON K, RIZZI A. Reynolds number effects identified with CFD methods compared to semi-empirical methods[C]//25th Congress of the International Council of the Aeronautical Sciences 2006 vol.3. Department of Aeronautical and Vehicle Engineering, 2006.
[25] YIP L P, VIJGEN P M H W, HARDIN J D, et al. In-flight pressure distributions and skin-friction measurements on a subsonic transport high-lift wing section[J]. Journal of Aircraft,1993,32(3):529-538.
[26] MACWILKINSON D G, BLACKERBY W T, PATERSON J H. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2:Wind tunnel test, analysis, and prediction techniques. Volume 1:Drag predictions, wind tunnel data analysis and correlation[R].Washington,D.C.:NASA, 1974.
[27] CROOK A. Skin-friction estimation at high Reynolds numbers and Reynolds-number effects for transport aircraft:44313785[R]. Standford:Center for Turbulence Research, 2002:427-438.
[28] BLACKWELL J A. Preliminary study of effects of Reynolds number and boundary-layer transition location on shock-induced separation:NASA TN D-5003[R].Washington,D.C.:NASA,1969.
[29] XU J K, BAI J Q, ZHANG Y, et al. Transition study of 3D aerodynamic configures using improved transport equations modeling[J]. Chinese Journal of Aeronautics, 2016, 29(4):874-881.
[30] MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4):583-619.
[31] SA J H, PARK S H, KIM C J, et al. Low-Reynolds number flow computation for eppler 387 wing using hybrid DES/transition model[J]. Journal of Mechanical Science and Technology, 2015, 29(5):1837-1847.
[32] WANG G, ZHANG M H, TAO Y J, et al. Research on analytical scaling method and scale effects for subscale flight test of blended wing body civil aircraft[J]. Aerospace Science and Technology, 2020, 106:106114.
[33] OYIBO G A. Generic approach to determine optimum aeroelastic characteristics for composite forward-swept-wing aircraft[J]. AIAA Journal, 1984, 22(1):117-123.
[34] LIVNE E, WEISSHAAR T A. Aeroelasticity of nonconventional airplane configurations-past and future[J]. Journal of Aircraft, 2003, 40(6):1047-1065.
文章导航

/