某层流机翼验证机跨声速层流特性敏感性分析(层流专刊)

  • 牛笑天 ,
  • 李杰 ,
  • 周智鹏 ,
  • 杨钊 ,
  • 昌陌尘
展开
  • 西北工业大学

收稿日期: 2021-12-07

  修回日期: 2022-01-18

  网络出版日期: 2022-01-18

Sensitivity analysis of the transonic laminar flow characteristics of an aircraft with laminar wing section

  • NIU Xiao-Tian ,
  • LI Jie ,
  • ZHOU Zhi-Peng ,
  • YANG Zhao ,
  • CHANG Mo-Chen
Expand

Received date: 2021-12-07

  Revised date: 2022-01-18

  Online published: 2022-01-18

摘要

本文采用RANS(Reynold-Averaged Navier-Stokes)方法结合基于当地变量的转捩预测模型,针对某特殊布局形式的层流机翼验证机开展跨声速层流特性和参数敏感性分析。通过DLR F-5三维机翼构型对基于RANS的转捩预测方法进行算例验证分析,同时将某层流验证机中央翼段层流转捩预测结果与试验进行对比,证明了采用的计算方法完全适用于所研究问题。本文重点关注全机巡航状态附近的气动特性和中央验证段在不同飞行状态下的表面转捩位置及层流区长度。通过计算,进一步分析层流流动对全机升阻及力矩特性的影响。结果表明:马赫数、雷诺数、来流湍流度和迎角等均会对中央验证段表面转捩位置产生明显的影响,且影响规律差异较大。马赫数的增加会引起压力分布的较大变化,使转捩位置出现前后波动;雷诺数按同样幅度的递增会使得翼面转捩位置有规律的提前;而来流湍流度和迎角的增加会导致转捩提前,层流区长度明显缩小。

本文引用格式

牛笑天 , 李杰 , 周智鹏 , 杨钊 , 昌陌尘 . 某层流机翼验证机跨声速层流特性敏感性分析(层流专刊)[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2022.26771

Abstract

In this paper, the RANS (Reynold-Averaged Navier-Stokes) method combined with the transition model based on local variables is carried out on the transonic laminar flow characteristics and parameter sensitivity analy-sis for a special designed aircraft with laminar wing section. The RANS-based transition prediction method is vali-dated and analyzed by the transition prediction of the DLR F-5 three-dimensional wing. And the simulation results of the laminar wing section of the aircraft are compared with the corresponding experimental data. The pressure distribution and transition location on the upper surface both show good agreement with each other, and therefore further proves that the calculation method used in this paper is totally suitable for the problem. The present article mainly focuses on the aerodynamic characteristics of the whole aircraft in the cruise state, the transition location and the length of the laminar flow zone on the upper surface of the middle laminar wing section under different flight conditions. According to the calculation results, the influence of laminar flow on the lift、drag and moment characteristics of the whole aircraft are further analyzed. And the influence of key flow parameters such as Mach number, Reynolds number, freestream turbulence intensity and angle of attack on the transition position of the wing section surface were summarized. The results demonstrate that the transition position on the surface of the middle laminar wing section was impacted significantly by Mach number, Reynolds number, turbulence intensity and angle of attack of the free stream, but the influence rules are quite different. The increase of Mach number will cause a great change in the pressure distribution and make the transition position move forward and backward; The in-crease of Reynolds number by the same amplitude will make the transition position move forward regularly; And the increase in the turbulence intensity and angle of attack of the freestream will directly lead to the occurrence of an early transition, and the length of the laminar flow zone will be significantly reduced gradually.

参考文献

[1]《飞机设计手册》总编委会. 飞机设计手册(第6册)气动设计[M]. 北京: 国防工业出版社, 2002.General editorial board of aircraft design manual. Air craft design manual (Volume 6) aerodynamic design [M]. Beijing: National Defense Industry Press, 2002
[2]乔志德.自然层流超临界翼型的设计研究[J].流体力学实验与测量,1998(4):23-30.QIAO Z D,Design of laminar supercritical airfoil with-natural laminar flow [J]. Experiment and Measurements in Fluid Mechanics, 1998 (4): 23-30
[3]LEE J D . NLF Airfoil and Wing Design by Adjoint Method and Automatic Transition Prediction[C].27th AIAA Applied Aerodynamics Conference. 2009
[4]方宝瑞.飞机气动布局设[M].北京:航空工业出版社,1997:499-540.FANG B R. Aircraft aerodynamic[M]. layout design. Beijing: Aviation Industry Press, 1997:499-540
[5] 李权, 段卓毅, 张彦军,等. 民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013(04):13-20.LI Q, DUAN Z Y, et al. Research progress of natural laminar flow wing of civil aircraft [J].Advances in Aero-nautical Science and Engineering, 2013 (04): 13-20
[6] 杨青真, 张仲寅. 超临界层流机翼边界层及气动特性分析[J]. 航空学报, 2004, 25(5):438-438.YANG Q Z, ZHANG Z Y. Analysis of boundary layer and aerodynamic characteristics of supercritical laminar flow wing [J]. Acta Aeronautica et Astronautica Sinica, 2004, 25 (5): 438-438
[7] L Cameron, J Early, R Mcrobert. Multi-Objective Global Optimisation of Natural Laminar Flow Aerofoils With Surface Tolerance Definition[J]. 2011.
[8] 赖国俊, 李政德, 张颖哲. 自然层流翼型高雷诺数风洞试验研究[J]. 航空科学技术, 2017(8).LAI G J, LI Z D, ZHANG Y Z. High Reynolds number wind tunnel test of natural laminar airfoil [J].Aeronauti-cal Science and technology, 2017 (8)
[9]STREIT T,HORSTMANN K H,SCHRAUF G,et al. Complementary numerical and experimental data analysis of the ETW telfona pathfinder wing transition test[R]. AIAA 2011 -881 . 2011
[10] VERMEERSH O , YOSHIDA K , UEDA Y , et al. Nat-ural laminar flow wing for supersonic conditions: Wind tunnel experiments, flight test and stability computa-tions[J]. Progress in Aerospace Sciences,2015, 79(NOV.):JPASD1400069.
[11] KRUSE M,WUNDERLICH T,HEINRICH L. A Con-ceptual Study of a Transonic NLF Transport Aircraft with Forward Swept Wings[R]. AIAA 2012-3208.2012
[12] EPPINK J , WLEZINE R . Data Analysis for the NASA/Boeing Hybrid Laminar Flow Control Crossflow Experiment[C]// 41st AIAA Fluid Dynamics Conference and Exhibit. 2011.
[13] FAUCI R , A NICOLI, IMPEROTARE B , et al. Wind Tunnel Tests of a Transonic Natural Laminar Flow Wing[C]// AIAA Aerodynamic Measurement Technology & Ground Testing Conference. 2006.
[14] FUJINO M , YOSHIZAKI Y , KAWAMURA Y . Natu-ral-Laminar-Flow Airfoil Development for a Lightweight Business Jet[J]. Journal of Aircraft, 2003, 40(4).
[15] FUJINO M . Design and Development of the Honda-Jet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[16] 张坤, 宋文萍. en方法在无限展长后掠翼边界层转捩判断中的初步应用[J]. 西北工业大学学报, 2011,29(001):142-147.ZHANG K, SONG W P. Preliminary application of en method in boundary layer transition judgment of infinite swept wing [J]. Journal of Northwest University of tech-nology,2011, 29 (001): 142-147
[17] 朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(002):123-134.ZHU Zhen, SONG W P, HAN Z H. Automatic judgment of flow transition of wing body combination based on double en method [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (002): 123-134
[18] 牟斌, 江雄, 肖中云,等. 转捩模型的标定与应用[J]. 空气动力学学报, 2013(01):103-109.MOU B, JIANG X, XIAO Z Y , etc The calibration and application of transition model [J]. Acta Aer-odynamica Sinica 2013 (01): 103-109
[19] 周玲, 阎超, 郝子辉,等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016,v.37(04):15-25.ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criterion for predicting hypersonic bounda-ry layer flow [J]. Acta Aeronautica et Astronautica Sinica, 2016, v.37 (04): 15-25
[20] 阎超, 钱翼稷, 连祺祥. 粘性流体力学[M]. 北京航空航天大学出版社, 2005.YAN C, QIAN Y J, LIAN Q X. Viscous fluid mechan-ics [M]. Beihang University Press, 2005
[21] 史里希廷. 边界层理论[M]. 科学出版社, 1991.SCHLICHTING. Boundary layer theory[M]. Science Press, 1991

文章导航

/