论文

基于喷流作用的自然层流翼型阵风载荷减缓控制

  • 王海峰 ,
  • 邓枫 ,
  • 刘学强 ,
  • 覃宁
展开
  • 1. 南京航空航天大学 航空学院 飞行器先进设计技术国防重点学科实验室, 南京 210016;
    2. Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3 JD, United Kingdom

收稿日期: 2021-12-07

  修回日期: 2021-12-23

  网络出版日期: 2022-01-18

基金资助

国家自然科学基金(11672132,12032011);江苏高校优势学科建设工程

Gust load alleviation control based on jets for natural laminar airfoil

  • WANG Haifeng ,
  • DENG Feng ,
  • LIU Xueqiang ,
  • QIN Ning
Expand
  • 1. Ministerial Key Discipline Laboratory of Advanced Design Technology of Aircraft, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3 JD, United Kingdom

Received date: 2021-12-07

  Revised date: 2021-12-23

  Online published: 2022-01-18

Supported by

National Natural Science Foundation of China (11672132, 12032011); Priority Academia Program Development of Jiangsu Higher Education Institutions

摘要

为降低来流阵风引起的飞机气动载荷,基于CFD数值模拟对自然层流翼型NLF416开展了后缘喷流作用减缓阵风载荷的研究,研究包括开/闭环控制两部分工作,分别分析喷流动量系数、延迟时间及反馈系数和变量等对控制效果的影响。结果表明:喷流作用对阵风减缓是有效的,合适的喷流动量系数可有效减缓阵风引起的升力响应,降低响应变化量约78.9%,考虑喷流的迟滞效应后,可进一步减小10%左右;闭环控制方面,相比基于升力系数反馈存在的各种问题,基于上游阵风速度的控制明显较优,不仅有效降低了升力峰值,多减小了响应变化量约14.3%,动量系数也类似余弦函数变化,其控制效果更接近于开环控制。将这一结果运用至多种形式的连续阵风响应抑制中,也得到了较好的减载效果,进一步验证了喷流控制适用的广泛性。

本文引用格式

王海峰 , 邓枫 , 刘学强 , 覃宁 . 基于喷流作用的自然层流翼型阵风载荷减缓控制[J]. 航空学报, 2022 , 43(11) : 526767 -526767 . DOI: 10.7527/S1000-6893.2021.26767

Abstract

Gust load alleviation by trailing edge blowing is studied based on CFD numerical simulation for natural laminar airfoil NLF416, involving two sections:open and closed loop control. The effects of the momentum coefficient, time-lag, feedback factor and variable on the control effects are analyzed, and the results indicate the feasibility of gust load reduction by jets, and that the variation of lift response in the gust flow can decrease by about 78.9% with an accurate momentum coefficient. The response variation can be further reduced by 10% in consideration of the time-lag. For the closed-loop control, the feedback based on the gust velocity upstream is better than that based on the lift coefficient. The former can reduce both the lift peak and the response variation by 14.3% compared with the latter, and keep the change in the momentum coefficient similar to the cosine function. The results of feedback based on the gust velocity are close to those of the open-loop control. The control system is applied to the suppression of other continuous gust responses to verify the universality of jet flow control, and the results indicate a significant load reduction.

参考文献

[1] 许晓平, 周洲, 王军利. 基于直接力控制的阵风响应及阵风减缓研究[J]. 空气动力学学报, 2012, 30(1):101-107. XU X P, ZHOU Z, WANG J L. Research of the gust response and gust alleviation based on direct force control[J]. Acta Aerodynamica Sinica, 2012, 30(1):101-107(in Chinese).
[2] 许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6):818-823. XU X P, ZHU X P, ZHOU Z, et al. Further exploring CFD-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6):818-823(in Chinese).
[3] SEIDLER R B, WIDHALM M, WILD J. Load control for unsteady gusts with control surfaces using the linear frequency domain[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020:2670.
[4] GUO S J, DE LOS MONTEROS J, LIU Y. Gust alleviation of a large aircraft with a passive twist wingtip[J]. Aerospace, 2015, 2(2):135-154.
[5] 杨国伟, 王济康. CFD结合降阶模型预测阵风响应[J]. 力学学报, 2008, 40(2):145-153. YANG G W, WANG J K. Gust response prediction withCFD-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2):145-153(in Chinese).
[6] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4):1103-1111. NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1103-1111(in Chinese).
[7] ALAM M, HROMCIK M, HANIS T. Active gust load alleviation system for flexible aircraft:Mixed feedforward/feedback approach[J]. Aerospace Science and Technology, 2015, 41(2):122-133.
[8] LIU X, SUN Q, COOPER J E. LQG based model predictive control for gust load alleviation[J]. Aerospace Science and Technology, 2017, 71:499-509.
[9] BEWLEY T R. Flow control:New challenges for a new Renaissance[J]. Progress in Aerospace Sciences, 2001, 37(1):21-58.
[10] YOU D, MOIN P. Active control of flow separation over an airfoil using synthetic jets[J]. Journal of Fluids and Structures, 2008, 24(8):1349-1357.
[11] AMITAY M, GLEZER A. Role of actuation frequency in controlled flow reattachment over a stalled airfoil[J]. AIAA Journal, 2002, 40(2):209-216.
[12] DE VRIES H, BOEIJE C, CLEINE I, et al. Fluidic load control for wind turbine blades[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009:684.
[13] COOPERMAN A, BLAYLOCK M, VAN DAM C P. Experimental and simulated control of lift using trailing edge devices[J]. Journal of Physics:Conference Series, 2014, 555:012019.
[14] AL-BATTAL N, CLEAVER D, GURSUL I. Aerodynamic load control through blowing[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016:1820.
[15] DURAISAMY K, BAEDER J. Control of tip-vortex structure using steady and oscillatory blowing[C]//21st AIAA Applied Aerodynamics Conference. Reston:AIAA, 2003:3407.
[16] XU X P, ZHU X P, ZHOU Z, et al. Application of active flow control technique for gust load alleviation[J]. Chinese Journal of Aeronautics, 2011, 24(4):410-416.
[17] 薛铖, 邓枫, 覃宁. 阵风载荷主动喷流控制数值模拟研究[C]//第四届全国非定常空气动力学学术会议论文集. 北京:中国力学学会, 2018:98-105. XUE C, DENG F, QIN N. Numerical simulation of gust load control for an swept wing by active blowing[C]//Proceedings of the 4th National Conference on Unsteady Aerodynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2018:98-105(in Chinese).
[18] LI Y H, QIN N. Airfoil gust load alleviation by circulation control[J]. Aerospace Science and Technology, 2020, 98:105622.
[19] WRIGHT J, COOPER J. Introduction to aircraft aeroelasticity and loads[M]. New York:Wiley, 2015:301-303.
[20] ZAIDE A, RAVEH D. Numerical simulation and reduced-order modeling of airfoil gust response[J]. AIAA Journal, 2006, 44(8):1826-1834.
[21] COOPERMAN A, CHOW R, JOHNSON S, et al. Experimental and computational analysis of a wind turbine airfoil with active microtabs[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011:347.
[22] BRUNNER M, BLAYLOCK M, COOPERMAN A, et al. Comparison of CFD with wind tunnel tests of microjets for active aerodynamic load control[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012:898.
[23] COOPERMAN A, BRUNNER M, VAN DAM C C. Wind tunnel testing of jets and tabs for active load control of wind turbine blades[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012:AIAA 2012-1024.
[24] AL-BATTAL N H, CLEAVER D J, GURSUL I. Unsteady actuation of counter-flowing wall jets for gust load attenuation[J]. Aerospace Science and Technology, 2019, 89:175-191.
文章导航

/