利用Crab脉冲星X射线观测校准星载原子钟频率
收稿日期: 2021-10-25
修回日期: 2021-11-24
录用日期: 2022-01-12
网络出版日期: 2022-01-18
基金资助
科技部SKA专项(2020SKA0120103);国家自然科学基金(U1831130)
Correcting frequency of a spaceborne atomic clock using X-ray observations of Crab pulsar
Received date: 2021-10-25
Revised date: 2021-11-24
Accepted date: 2022-01-12
Online published: 2022-01-18
Supported by
National SKA Program of China(2020SKA0120103);National Natural Science Foundation of China(U1831130)
为了改善星载原子钟长期的时间保持能力,并提高其自主性,利用XPNAV-1卫星观测的Crab脉冲星数据研究了驾驭星载原子钟频率的方法。在X射线脉冲星计时处理中,利用高斯核回归的方法平滑了脉冲星轮廓,可以有效提高脉冲轮廓的信噪比(SNR),从而提高了计时精度。通过仿真记录光子到达时刻的参考钟存在频率偏差,分析了参考钟频率偏差对脉冲星拟合前计时残差的影响,基于此给出了脉冲星校准星载原子钟频率的方法。对于存在10-11量级频率偏差的星载钟,1个月左右的Crab脉冲星数据可以获得相对误差约40%的频率校准精度。利用更长时间跨度的脉冲星计时数据,预期可以进一步提高星载钟的频率校准精度。
童明雷 , 韩孟纳 , 杨廷高 , 赵成仕 , 朱幸芝 . 利用Crab脉冲星X射线观测校准星载原子钟频率[J]. 航空学报, 2023 , 44(3) : 526566 -526566 . DOI: 10.7527/S1000-6893.2022.26566
To improve the long-term time-keeping ability of a spaceborne atomic clock and improve its autonomy, this paper proposes a method for steering the frequency of the spaceborne atomic clock by using the Crab pulsar data observed by XPNAV-1 satellite. In the X-ray pulsar timing processing, we use the Gaussian kernel regression method to smooth the pulsar profile, which can effectively improve the Signal-to-Noise Ratio (SNR) of the pulsar profile and timing precision. By simulating the frequency deviation of the reference clock recording the photon arrival times, the influence of the frequency deviation of the reference clock on pre-fit timing residuals is analyzed. Based on this, a method for frequency calibration of the spaceborne atomic clock is given. For the spaceborne clock with frequency deviation of order 10-11, the frequency calibration accuracy with relative error of about 40% can be obtained from the Crab Pulsar data for about one month. It is expected that the frequency calibration accuracy of spaceborne clock can be further improved by using the pulsar timing data with a longer time span.
Key words: pulsar; atomic clock; X-ray pulsar timing; frequency steering; timing residual
1 | LORIMER D R, KRAMER M. Handbook of pulsar astronomy[M]. Cambridge: Cambridge University Press, 2005 |
2 | 吴鑫基, 乔国俊, 徐仁新. 脉冲星物理[M]. 北京: 北京大学出版社, 2018: 42-43, 83-87. |
WU X J, QIAO G J, XU R X. Pulsar physics[M]. Beijing: Peking University Press, 2018: 42-43, 83-87 (in Chinese). | |
3 | HULSE R A, TAYLOR J H. Discovery of a pulsar in a binary system[J]. The Astrophysical Journal Letters, 1975, 195: L51. |
4 | BACKER D C, KULKARNI S R, HEILES C, et al. A millisecond pulsar[J]. Nature, 1982, 300(5893): 615-618. |
5 | WOLSZCZAN A, FRAIL D A. A planetary system around the millisecond pulsar PSR1257 + 12[J]. Nature, 1992, 355(6356): 145-147. |
6 | 帅平, 李明, 陈绍龙. X射线脉冲星导航系统原理与方法[M]. 北京: 中国宇航出版社, 2009: 11-20. |
SHUAI P, LI M, CHEN S L. Principle and method of X-ray pulsar navigation system[M]. Beijing: China Aerospace Press, 2009: 11-20 (in Chinese). | |
7 | HOBBS G, COLES W, MANCHESTER R N, et al. Development of a pulsar-based time-scale[J]. Monthly Notices of the Royal Astronomical Society, 2012, 427(4): 2780-2787. |
8 | HOBBS G, GUO L, CABALLERO R N, et al. A pulsar-based time-scale from the international pulsar timing array[J]. Monthly Notices of the Royal Astronomical Society, 2020, 491(4): 5951-5965. |
9 | ZHANG Z H, TONG M L, ZHAO C S, et al. The influence of the observational strategies of pulsar timing on the properties of pulsar clocks[J]. Research in Astronomy and Astrophysics, 2020, 20(12): 135-141. |
10 | QIAN G. LM-11 successfully launched XPNAV-1[J]. Aerospace China, 2016, 17(4): 61. |
11 | 黄良伟, 帅平, 张新源, 等. 脉冲星导航试验卫星时间数据分析与脉冲轮廓恢复[J]. 中国空间科学技术, 2017, 37(3): 1-10. |
HUANG L W, SHUAI P, ZHANG X Y, et al. XPNAV-1 Satellite timing data analysis and pulse profile recovery[J]. Chinese Space Science and Technology, 2017, 37(3): 1-10 (in Chinese). | |
12 | 帅平, 张新源, 黄良伟, 等. 脉冲星导航试验卫星科学观测数据分析[J]. 空间控制技术与应用, 2017, 43(2): 1-6. |
SHUAI P, ZHANG X Y, HUANG L W, et al. X-ray pulsar navigation test satellite science data analysis[J]. Aerospace Control and Application, 2017, 43(2): 1-6 (in Chinese). | |
13 | 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287. |
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese). | |
14 | 北斗网. 脉冲星试验01星在轨试验数据[EB/OL]. (2017-05-09) [2020-06-01]. . |
Website Beidou. On-orbit test data of XPNAV-1[EB/OL]. (2017-05-09) [2020-06-01]. (in Chinese). | |
15 | 朱鸿旭, 童明雷, 杨廷高, 等. XPNAV-1卫星先期发布数据的计时分析[J]. 宇航学报, 2019, 40(12): 1492-1500. |
ZHU H X, TONG M L, YANG T G, et al. Timing analysis of pre-released data for XPNAV-1 satellite[J]. Journal of Astronautics, 2019, 40(12): 1492-1500 (in Chinese). | |
16 | 韩孟纳, 童明雷, 朱鸿旭, 等. X射线脉冲星TOA数量对计时精度和导航的影响分析[J]. 时间频率学报, 2021, 44(1): 66-76. |
HAN M N, TONG M L, ZHU H X, et al. Analysis of the influences of TOA number on timing precision and navigation[J]. Journal of Time and Frequency, 2021, 44(1): 66-76 (in Chinese). | |
17 | LYNE A G, PRITCHARD R S, GRAHAM-SMITH F. Jodrell bank Crab pulsar monthly ephemeris[EB/OL]. (2021-05-21) [2021-06-01]. . |
18 | SHANG L H, DU Y J, CUI X Q, et al. Long-term variations of X-ray pulse profiles for the Crab pulsar: Data analysis and modeling[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(10): 109511. |
19 | 杨廷高, 童明雷, 赵成仕, 等. Crab脉冲星X射线计时观测数据处理与分析[J]. 天文学报, 2018, 59(2): 10-16. |
YANG T G, TONG M L, ZHAO C S, et al. Process and analysis of X-ray timing data for crab pulsar[J]. Acta Astronomica Sinica, 2018, 59(2): 10-16 (in Chinese). | |
20 | 易韦韦, 偶晓娟, 许静文, 等. 脉冲星导航试验卫星观测数据处理与分析[J]. 深空探测学报, 2018, 5(3): 241-245, 261. |
YI W W, OU X J, XU J W, et al. Processing and analysis of X-ray pulsar-based navigation test satellite observation data[J]. Journal of Deep Space Exploration, 2018, 5(3): 241-245, 261 (in Chinese). | |
21 | TAYLOR J H. Pulsar timing and relativistic gravity[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1992, 341(1660): 117-134. |
22 | EDWARDS R T, HOBBS G B, MANCHESTER R N. TEMPO2, a new pulsar timing package - II. The timing model and precision estimates[J]. Monthly Notices of the Royal Astronomical Society, 2006, 372(4): 1549-1574. |
23 | YAN L L, GE M Y, YUAN J P, et al. Phase evolution of the crab pulsar between radio and X-ray[DB/OL]. arXiv preprint: 1708.05898,2017. |
24 | 朱鸿旭, 童明雷, 周庆勇, 等. XPNAV-1卫星首批公开数据中光子能量对计时精度影响的统计分析[J]. 时间频率学报, 2020, 43(1): 29-40. |
ZHU H X, TONG M L, ZHOU Q Y, et al. Statistical analysis of the influences of photon energy on timing accuracy in the first public data release of XPNAV-1 satellite[J]. Journal of Time and Frequency, 2020, 43(1): 29-40 (in Chinese). | |
25 | 李孝辉, 杨旭海, 刘娅. 时间频率信号的精密测量[M]. 北京: 科学出版社, 2010: 15-17. |
LI X H, YANG X H, LIU Y. Precise measurement of time frequency signal[M]. Beijing: Science Press, 2010: 15-17 (in Chinese). | |
26 | 陈洪卿, 王振伟. GPS系统时间及其与其他时间的关系[J]. 时间频率学报, 2012, 35(4): 201-204, 234. |
CHEN H Q, WANG Z W. GPS system time and its relation with other time[J]. Journal of Time and Frequency, 2012, 35(4): 201-204, 234 (in Chinese). | |
27 | PETIT G. From atomic clocks to coordinate times[J]. Proceedings of the International Astronomical Union, 2006, 2(14): 478. |
28 | International Astronomical Union. IAU 2006 Resolution B3[EB/OL]. (2020-03-12) [2020-06-01]. . |
29 | International Astronomical Union. IAU 2000 Resolution B1[EB/OL]. (2020-03-12) [2020-06-01]. . |
30 | FUKUSHIMA T. Time ephemeris and general relativistic scale factor[J]. Proceedings of the International Astronomical Union, 2009, 5(S261): 89-94. |
/
〈 |
|
〉 |